moles KCl = ( M solution ) ( V solution in L )moles KCl = ( 2.2 mol KCl / L solution ) ( 0.635 L of solution )moles KCl = 1.397 moles KCl
moles KCL = ( M solution ) ( L of solution )moles KCl = ( 0.83 mol KCl / L ) ( 1.7 L ) = 1.41 moles KCl
The answer is of course 0,9 M.
M= moles in solution/liters so plug in what you know 3.0M of KCl solution = moles in solution/ 2.0L multiply both sides by 2.0L moles solute = 1.5 moles KCl so you need 1.5 moles KCl to prepare the solution
To find the moles of KCl in the solution, we first calculate the amount of KCl in 50.0 mL using the concentration. Volume (in liters) = 50.0 mL / 1000 = 0.050 L. Moles of KCl = Concentration x Volume = 0.552 mol/L x 0.050 L = 0.0276 moles of KCl.
moles KCl = ( M solution ) ( V solution in L )moles KCl = ( 2.2 mol KCl / L solution ) ( 0.635 L of solution )moles KCl = 1.397 moles KCl
moles KCL = ( M solution ) ( L of solution )moles KCl = ( 0.83 mol KCl / L ) ( 1.7 L ) = 1.41 moles KCl
Molarity is moles of solute per L of solution.moles KCl = ( 1.68 M ) ( 0.121 L ) = ( 1.68 mol/L ) ( 0.121 L )moles KCl = 0.203 moles KCl
The answer is of course 0,9 M.
1 mole of KClO3 produces 1 mole of KCl upon decomposition. Therefore, 0.440 moles of KClO3 will produce 0.440 moles of KCl.
To find the number of grams in 3.75 moles of KCl, you would first calculate the molar mass of KCl, which is approximately 74.55 g/mol. Then, you would multiply this molar mass by the number of moles (3.75 moles) to get the answer, which is 279.56 grams of KCl.
M= moles in solution/liters so plug in what you know 3.0M of KCl solution = moles in solution/ 2.0L multiply both sides by 2.0L moles solute = 1.5 moles KCl so you need 1.5 moles KCl to prepare the solution
To find the moles of KCl in the solution, we first calculate the amount of KCl in 50.0 mL using the concentration. Volume (in liters) = 50.0 mL / 1000 = 0.050 L. Moles of KCl = Concentration x Volume = 0.552 mol/L x 0.050 L = 0.0276 moles of KCl.
To find the moles of KCl in the solution, we use the formula: Moles = Molarity x Volume (in liters). Plugging in the values, Moles = 2.3 mol/L x 0.630 L = 1.449 mol of KCl in 0.630 L of a 2.3M KCl solution.
To find the number of moles in 12.57 grams of KCl, you need to first calculate the molar mass of KCl which is approximately 74.55 g/mol. Then, divide the given mass (12.57g) by the molar mass to get the number of moles, which is approximately 0.1685 moles.
To find the volume of 0.25M KCl needed to provide 0.012 moles of KCl, you can use the formula: moles = Molarity x Volume (in liters). Rearranging this formula to solve for Volume gives Volume = moles / Molarity. Plugging in the values, Volume = 0.012 moles / 0.25 mol/L = 0.048 L = 48 ml.
To find the number of moles of ions in the solution, we first calculate the total number of moles of KCl using the given concentration and volume. Multiply the number of moles of KCl by 2 (since one mole of KCl produces 2 moles of ions, one K+ and one Cl-) to find the total moles of ions present.