The work (energy) done on an object is Force x Distance. If there is no friction, and the object started at rest, then this will also be the kinetic energy that the object has.
Then the kinetic energy, Ek = F * d, so F = Ek / d
Chat with our AI personalities
To find force using kinetic energy and distance, you need more information. You also need the time taken to cover the distance or the speed at which the object is moving. With this additional information, you can apply the work-energy principle, which relates the work done on an object to its change in kinetic energy to calculate the force.
Work done by a force (W) = Force (F) x distance (m) W = 22 x 18 = 396 Joules According to the law of conservation of Energy, the total energy of a closed system is constant, but can change from one type to another. Therefore, the work given to the object must be converted into the kinetic energy of the object. So, Increase in Kinetic energy = work done = 396 Joules
To find the mean kinetic energy with only mass and horizontal distance traveled, you would also need to know the initial and final velocities of the object. Once you have these values, you can calculate the mean kinetic energy using the formula: KE = 0.5 * m * ((v_final)^2 - (v_initial)^2), where m is the mass and v is the velocity.
The coefficient of kinetic friction can be calculated using the formula: coefficient of kinetic friction = force of kinetic friction / normal force. The force of kinetic friction can be found using the formula: force of kinetic friction = coefficient of kinetic friction * normal force. Given the force of 31N and normal force equal to the weight of the crate (mg), you can calculate the coefficient of kinetic friction.
You can calculate kinetic energy using the formula KE = 0.5 * m * v^2, where m is the mass of the object and v is its velocity. If the final velocity is not given, you would need more information or assumptions to solve for kinetic energy.
The work-energy theorem states that the work done on an object is equal to its change in kinetic energy. Mathematically, the expression for the work-energy theorem is given as: W = ΔKE, where W is the work done on the object and ΔKE is the change in kinetic energy of the object.