Luminosity depends directly on mass because more massive main-sequence stars do not need to graviationally contract as far to reach fusion temperatures, and so they have a larger volume and contain a much larger amount of light energy, which diffuses out and generates a higher luminosity, very roughly in proportion to the higher volume.
Main sequence stars best obey the mass-luminosity relation. This empirical relation states that there is a direct relationship between a star's mass and its luminosity. In general, the more massive a main sequence star is, the more luminous it will be.
yes
above the main-sequence stars
Two types of stars that can form from nebula are main sequence stars, like our Sun, and giant stars, which are larger and brighter than main sequence stars. Main sequence stars fuse hydrogen into helium in their cores, while giant stars have expanded and evolved from the main sequence phase.
The main sequence stars on the Hertzsprung-Russell diagram that are least massive are the red dwarfs. These stars have low masses compared to other main sequence stars like our sun. They are cooler and fainter, making them difficult to observe compared to more massive stars.
No. Main sequence stars are simply stars that are fusing hydrogen into helium and have a specific relationship between color and luminosity. They range from red dwarfs to large O-type main sequence stars.
About 90 percent of stars are classified as main sequence stars, which are stable, fusing hydrogen into helium in their cores. These stars follow a distinct relationship between their luminosity and temperature, known as the Hertzsprung-Russell diagram. Main sequence stars include our Sun and have a lifespan ranging from millions to billions of years.
On such a diagram, those stars lie on a curve called the "main sequence". It is not a simple relationship - for example, it isn't a straight line on the diagram. Therefore, it isn't easy to describe in words. It's best if you look up "Main sequence", for example on the Wikipedia, and look at the corresponding diagram.
"main sequence" is the tern.
There are billions of stars that are not on the main sequence.
The smallest stars in the main sequence are the stars with cooler surface temperatures.
main sequence stars , our sun is also a main sequence star
About 90% of all stars are main sequence stars, including our Sun. These stars are in the stable phase of their lifecycle, where they fuse hydrogen into helium in their cores. Main sequence stars are the most common type of stars found in the universe.
On a logarithmic scale for luminosity, it is quite close to a negative linear relationship.
as surface temperature increases, luminosity increases
Space isn't like a place it is time the spped of space develops the time of the sun and stars
Main sequence stars best obey the mass-luminosity relation. This empirical relation states that there is a direct relationship between a star's mass and its luminosity. In general, the more massive a main sequence star is, the more luminous it will be.