answersLogoWhite

0


Best Answer

You need to clarify the question.

User Avatar

Wiki User

โˆ™ 14y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

โˆ™ 5mo ago

No, the Schrรถdinger equation cannot be derived using classical physics principles. It was developed in quantum mechanics to describe the behavior of quantum particles, such as electrons, and is based on the probabilistic nature of quantum mechanics.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Can schrodinger equation be driven
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What year did Schrodinger make a model of the electrons surrounding the nucleus at a distance?

The Schrodinger equation is from January 1926.


How did Erwin Schrodinger achieve quantum mechanics?

Erwin Schrodinger developed a wave equation, known as the Schrodinger equation, that describes how the quantum state of a physical system changes over time. This equation is a fundamental tool in quantum mechanics, providing a mathematical framework for predicting the behavior of particles at the quantum level. Schrodinger's work was crucial in the development of quantum mechanics as a coherent and successful theory.


Darboux transformation of non linear Schrodinger equation?

The Darboux transformation is a method used to generate new solutions of a given nonlinear Schrodinger equation by manipulating the scattering data of the original equation. It provides a way to construct exact soliton solutions from known solutions. The process involves creating a link between the spectral properties of the original equation and the transformed equation.


Can we apply schrodinger's wave equation to a particle having velocity comparable with the velocity of the light?

Schrodinger's wave equation does not accurately describe the behavior of particles with velocities comparable to the speed of light. In this case, relativistic quantum mechanics, specifically the Dirac equation, is needed to properly describe the behavior of particles moving at relativistic speeds. The Dirac equation incorporates special relativity and provides a more accurate description of such high-speed particles.


Who has the greatest contribution in quantum mechanics among Heisenberg and Dirac and Schrodinger?

It is difficult to say who has the greatest contribution as all three physicists, Heisenberg, Dirac, and Schrodinger, made significant contributions to the development of quantum mechanics. Heisenberg is known for his matrix mechanics, Dirac for his work on quantum electrodynamics, and Schrodinger for his wave equation. Each of their contributions played a crucial role in shaping our understanding of quantum mechanics.

Related questions

What are the differences in the use of the time-dependent Schrodinger equation and the time-independent Schrodinger equation?

The time-independent Schr


When was the electron wave equation written?

This is the Schrodinger equation from 1925-1926.


What year did Schrodinger make a model of the electrons surrounding the nucleus at a distance?

The Schrodinger equation is from January 1926.


Who designed a mathematical equation for the model of the atom?

Erwin Schrodinger


How did Erwin Schrodinger achieve quantum mechanics?

Erwin Schrodinger developed a wave equation, known as the Schrodinger equation, that describes how the quantum state of a physical system changes over time. This equation is a fundamental tool in quantum mechanics, providing a mathematical framework for predicting the behavior of particles at the quantum level. Schrodinger's work was crucial in the development of quantum mechanics as a coherent and successful theory.


Shapes of electron orbital are determined by what equations?

Schrodinger wave equation


How did heisenberg's principle influence schrodinger to develop his wave equation?

Heisenberg's uncertainty principle, which states the limitations in simultaneously measuring a particle's position and momentum accurately, inspired Schrodinger to find a description of particles in terms of waves. This led Schrodinger to develop his wave equation, which describes the behavior of quantum particles in terms of wave functions.


Darboux transformation of non linear Schrodinger equation?

The Darboux transformation is a method used to generate new solutions of a given nonlinear Schrodinger equation by manipulating the scattering data of the original equation. It provides a way to construct exact soliton solutions from known solutions. The process involves creating a link between the spectral properties of the original equation and the transformed equation.


Can we apply schrodinger's wave equation to a particle having velocity comparable with the velocity of the light?

Schrodinger's wave equation does not accurately describe the behavior of particles with velocities comparable to the speed of light. In this case, relativistic quantum mechanics, specifically the Dirac equation, is needed to properly describe the behavior of particles moving at relativistic speeds. The Dirac equation incorporates special relativity and provides a more accurate description of such high-speed particles.


How Heisenberg's principle influenced Schrodinger to develop his wave equation?

Heisenberg's Uncertainty Principle introduced the concept of inherent uncertainty in measuring both the position and momentum of a particle simultaneously. This influenced Schrodinger to develop a wave equation that could describe the behavior of particles in terms of probability waves rather than definite trajectories, allowing for a more complete description of quantum systems. Schrodinger's wave equation provided a way to predict the behavior of quantum particles without violating the Uncertainty Principle.


Who has the greatest contribution in quantum mechanics among Heisenberg and Dirac and Schrodinger?

It is difficult to say who has the greatest contribution as all three physicists, Heisenberg, Dirac, and Schrodinger, made significant contributions to the development of quantum mechanics. Heisenberg is known for his matrix mechanics, Dirac for his work on quantum electrodynamics, and Schrodinger for his wave equation. Each of their contributions played a crucial role in shaping our understanding of quantum mechanics.


What did the model of the atom proposed by Erwin Schrodinger suggest?

Erwin Schrodinger's model of the atom suggested that electrons are not particles moving in fixed orbits, but rather described as waves that exist in regions of space around the nucleus called orbitals. The behavior of electrons within these orbitals is governed by mathematical equations known as wave functions.