Chat with our AI personalities
All isotopes of polonium can undergo alpha decay, a small number of isotopes can also undergo beta decay, K capture decay, or gamma decay.
No, not all atoms give off radiation. Only certain types of unstable atoms, known as radioactive atoms, undergo radioactive decay and emit radiation in the form of alpha particles, beta particles, or gamma rays.
The actinides all have a numerical ratio of protons to neutrons that makes their atomic nuclei unstable. This causes those nuclei to expel some type of particle (alpha or beta) and this causes a transmutation into another less massive (and usually more stable) element. This is radioactive decay.
Radium decays in any of (at least) four different ways, depending on isotope and, in some cases, on luck, as some isotopes can decay in different ways. The most important way radium can decay is by alpha emission. Nearly all naturally occurring radium decays this way, and so do the majority of synthetic isotopes. In this case, radium emits an alpha particle, which can be regarded as a helium nucleus, and the daughter atom is radon. The isotope of radon is depends on the isotope of radium involved; the mass number of the radon is always equal to the mass number of the radium minus four. Some heavier radium isotopes undergo negative beta decay, in which case the decay products are an actinium atom and a negative beta particle, which can be viewed as an electron. Some lighter radium isotopes undergo positive beta decay, in which case the decay products are a francium atom, a positive beta particle, which can be viewed as a positron, and an electron type antineutrino. A few radium isotopes also rarely undergo what is called cluster decay, and the most important naturally occurring isotope, radium-226 is among these. Cluster decay involves emission of a nucleus larger than an alpha particle, and in the case of radium all known cluster decays emit carbon-14 nuclei. In this case, the daughter atom is lead, with a mass number that is 14 lower than the mass number of the parent. So radium-226 can emit a carbon-14 nucleus, leaving a lead-212 atom.
Thorium-234 does not change into Uranium-234. Thorium-234 undergoes radioactive decay to form Protactinium-234, which then decays to form Uranium-234. This process happens over multiple steps through alpha and beta decay mechanisms.