answersLogoWhite

0

quality seconds

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach

Add your answer:

Earn +20 pts
Q: What does qs stand for?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

what- point R is on the perpendicular bisector of QS?

5


Why is the sum or product of two rational numbers rational?

Suppose p/q and r/s are rational numbers where p, q, r and s are integers and q, s are non-zero.Then p/q + r/s = ps/qs + qr/qs = (ps + qr)/qs.Since p, q, r, s are integers, then ps and qr are integers, and therefore (ps + qr) is an integer.q and s are non-zero integers and so qs is a non-zero integer.Consequently, (ps + qr)/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.Also p/q * r/s = pr/qs.Since p, q, r, s are integers, then pr and qs are integers.q and s are non-zero integers so qs is a non-zero integer.Consequently, pr/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.


What is 0.71 repted qs a decimal?

The answer will depend on whether the number is 0.717171... or 0.711111...


Why is the difference between two rational numbers always a rational number?

Suppose x and y are two rational numbers. Therefore x = p/q and y = r/s where p, q, r and s are integers and q and s are not zero.Then x - y = p/q - r/s = ps/qs - qr/qs = (ps - qr)/qsBy the closure of the set of integers under multiplication, ps, qr and qs are all integers,by the closure of the set of integers under subtraction, (ps - qr) is an integer,and by the multiplicative properties of 0, qs is non zero.Therefore (ps - qr)/qs satisfies the requirements of a rational number.


How do you subtract rational numbers with the same or different signs?

Suppose x and y are two rational number.Then x = p/q and y = r/s where p, q, r and s are integers, with q and s being non-zero. Then x - y = p/q - r/s = pq/qs - qr/qs = (pq - rs)/qs. The signs of x and y do not matter, in so far as their signs will be used to determine the signs of p,q, r and s.