Roman Numerals are a way of telling numbers years ago.
It is what the Romans used to use years ago for their numbers.
EXAMPLES: I = One II = Two III = 3 IV = Four ... and so on.
Chat with our AI personalities
In simple Python code: def convertToAngle(num): while True: if num < 0: num = 360 - num elif num > 360: num -= 360 else: break return num
# include <stdio.h> void Rec_Dec_To_Bin (int num); void main () { int num; int base; printf ("Enter the decimal number to convert it binary.\n"); scanf ("%d", &num); printf ("The number in decimal is : %d\n", num); printf ("\n"); printf ("The %d in binary is : ", num); Rec_Dec_To_Bin (num); printf ("\n\n"); } void Rec_Dec_To_Bin (int num) { if (((num / 2) != 0) && (num > 1)) { Rec_Dec_To_Bin ((num / 2)); } printf ("%d", (num % 2)); }
# include <stdio.h> main() { int num,count,sum; count=0; sum=0; printf("enter an integer :"); scanf("%d",&num); printf("ur num is : %d \n",num); while (num!=0) { count++; sum+=num%10; num/=10; } printf("sum of the digits is : %d",sum); }
i=2 rem=1 echo "Enter a number" read num if [ $num -lt 2 ] then echo "$num is not prime" exit 0 fi while [ $i -le `expr $num / 2` -a $rem -ne 0 ] do rem=`expr $num % $i` i=`expr $i + 1` done if [ $rem -ne 0 ] then echo "$num is prime" else echo "$num is not prime" fi
You need two utility functions. The first determines if a given number is prime or not. The second finds the next prime after a given number. The following function can be used to determine if a given integer is prime: bool is_prime (const unsigned num) { if (num<2) return false; if (0==(num%2)) return num==2; unsigned max_factor = (unsigned) sqrt ((double) num) + 1; unsigned factor; for (factor=3; factor<max_factor; ++factor) if (0==(num%factor)) return false; return true; } The following function can be used to determine the next prime after the given integer: unsigned next_prime (unsigned num) { while (!is_prime (++num)); return num; } Now you can print a series of primes using the following: int main (void) { unsigned num=1; while (num<10000) { num = next_prime (num); printf ("%d is prime\n", num); } return 0; }