answersLogoWhite

0


Best Answer

A root-finding algorithm is a numerical method, or algorithm, for finding a value. Finding a root of f(x) − g(x) = 0 is the same as solving the equation f(x) = g(x).

User Avatar

Wiki User

βˆ™ 10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Numerical method for solving can eqution bisection method?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Disadvantages of the bisection method in numerical methods?

The main disadvantage of the bisection method for finding the root of an equation is that, compared to methods like the Newton-Raphson method and the Secant method, it requires a lot of work and a lot of iterations to get an answer with very small error, whilst a quarter of the same amount of work on the N-R method would give an answer with an error just as small.In other words compared to other methods, the bisection method takes a long time to get to a decent answer and this is it's biggest disadvantage.


What is advantages of bisection method?

In the absence of other information, it is the most efficient.


How does the bisection method work when solving nonlinear equations?

it works exactly the same as it does with linear equations, you don't need to do any differentiation or anything fancy with this method, just have to plug in values of x, so it shouldn't make a difference if the equation is linear or nonlinear.


What is the advantages of using bisection method?

1. it is always convergent. 2. it is easy


What is the rate of convergence for the bisection method?

The rate of convergance for the bisection method is the same as it is for every other iteration method, please see the related question for more info. The actual specific 'rate' depends entirely on what your iteration equation is and will vary from problem to problem. As for the order of convergance for the bisection method, if I remember correctly it has linear convergence i.e. the convergence is of order 1. Anyway, please see the related question.

Related questions

Disadvantages of the bisection method in numerical methods?

The main disadvantage of the bisection method for finding the root of an equation is that, compared to methods like the Newton-Raphson method and the Secant method, it requires a lot of work and a lot of iterations to get an answer with very small error, whilst a quarter of the same amount of work on the N-R method would give an answer with an error just as small.In other words compared to other methods, the bisection method takes a long time to get to a decent answer and this is it's biggest disadvantage.


What is advantages of bisection method?

In the absence of other information, it is the most efficient.


How does the bisection method work when solving nonlinear equations?

it works exactly the same as it does with linear equations, you don't need to do any differentiation or anything fancy with this method, just have to plug in values of x, so it shouldn't make a difference if the equation is linear or nonlinear.


What is the advantages of using bisection method?

1. it is always convergent. 2. it is easy


What is the rate of convergence for the bisection method?

The rate of convergance for the bisection method is the same as it is for every other iteration method, please see the related question for more info. The actual specific 'rate' depends entirely on what your iteration equation is and will vary from problem to problem. As for the order of convergance for the bisection method, if I remember correctly it has linear convergence i.e. the convergence is of order 1. Anyway, please see the related question.


What is the Real root of 1-0.6x divided by x using bisection method?

The root of f(x)=(1-0.6x)/x is 1.6666... To see how the bisection method is used please see the related question below (link).


Write a programm to implement the bisection method?

Please see the link for a code with an explanation.


When to use problem solving method?

when to use problem solving method


When to use problem-solving method?

when to use problem solving method


Which numerical method gives more accuracy?

I may be wrong, but I think the question is kind of ambiguous. Do you mean a numerical integration method, a numerical differentiation method, a pivoting method, ... specify.


What has the author E A Volkov written?

E. A. Volkov has written: 'Numerical methods' -- subject(s): Numerical analysis 'Block method for solving the Laplace equation and for constructing conformal mappings' -- subject(s): Harmonic functions, Conformal mapping


What is the difference between bisection and false position method?

In bisection method an average of two independent variables is taken as next approximation to the solution while in false position method a line that passes through two points obtained by pair of dependent and independent variables is found and where it intersects abissica is takent as next approximation..