answersLogoWhite

0


Best Answer

AD means that Anno Domini , the year of lord and BD means that Before Christ

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the difference between AD and BD?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Find the difference in two fractions?

The difference between the fractions a/b and c/d = abs[(ad - bc)/bd]


Would the difference of a rational number and a rational number be rational?

The difference of two rational numbers is rational. Let the two rational numbers be a/b and c/d, where a, b, c, and d are integers. Any rational number can be represented this way. Their difference is a/b-c/d = ad/bd-cb/bd = (ad-cb)/bd. Products and differences of integers are always integers. This means that ad-cb is an integer, and so is bd. Thus, (ad-cb)/bd is a rational number (since it is the ratio of two integers). This is equivalent to the difference of the original two rational numbers.


Why the sum difference and product of 2 rational numbers rational?

A rational number is one that can be expressed as a/b The sum of two rational numbers is: a/b + c/d =ad/bd + bc/bd =(ad+bc)/bd =e/f which is rational The difference of two rational numbers is: a/b - c/d =ab/bd - bc/bd =(ab-bc)/bd =e/f which is rational The product of two rational numbers is: (a/b)(c/d) =ac/bd =e/f which is rational


If bd does not equal 0 then a over b plus c over d equals?

If bd ≠ 0, then a/b + c/d (the common denominator is bd) = (a x d)/(b x d) + (c x b)/(d x b) = ad/bd + cb/db = ad/bd + cb/bd = (ad + cb)/ bd


How do two fractions have a difference close to 0?

according to sum of fractions: a/b + c/d = (ad+bc)/bd hence for example: a=c=1 , b=d=2: (ad+bc)/bd = (2+2)/2x2 = 4/4 = 1 sagy


Why is a over b plus c over d equal ad plus bc divided by bd always valid?

Because it can be derived from a large number of more basic principles applied to numbers. Since a/b and c/d are defined, then b and d are non-zero. Then a/b = ad/bd since multiplying the numerator and denominator of a fraction by a non-zero number leaves it unchanged. Similarly, c/d = bc/bd [These steps implicitly assume the commutative property of multiplication ie there is no difference between premultiplication and postmultiplication] Another property of numbers: If x = p and y = q then x+y = p+q [equals added to equals result in equals]. So a/b + c+d = ad/bd + bc/bd and finally, using the distributive property of multiplication [by 1/bd] over addition, = (ad + bc)/bd Maybe you wish you hadn't asked!


How many different ways can you write a fractions that has a numerator of 2 as a sum of fractions?

Infinitely many ways!Suppose you have the fraction 2/d.Pick any pair of integers a and b where b � 0.Then 2b-ad is and integer, as is bd so that (2b - ad)/bd is a fraction.Consider the fractions a/b and (2b - ad)/bdTheir sum isa/b + (2b-ad)/bd = ad/bd + (2b-ad)/bd = 2b/bd = 2/d - as required.Since a and b were chosen arbitrarily, there are infinitely many possible answers to the question.


What is one difference between Bangladesh and the USA?

The USA is big, while BD is small.


What is the difference between 50 ad and 2010 ad?

1960 years


What is the difference between AD and AC?

Ad is higher than ac


Is the difference of two rational numbers always a rational number?

Yes. Since they are rational numbers, let's call the first one a/b and the second one c/d where a,b,c, and d are integers. Now we can subtract by finding a common denominator. Let's use bd. So we have ad/bd-cb/bc= (ad-bc)/CD which is rational since we know ad and bc are integers being the product of integers and CD is also an integers. Call ad-bd=P and call CD=Q where P and Q are integers. We now see the difference is of two rationals is rational.


How do you find fraction difference?

For any two fractions, a/b and c/d, where b and d are non-zero, a/b - c/d = (ad - bc)/bd