yes
The rate law for a chemical reaction expresses how the rate of the reaction depends on the concentration of reactants. By plugging in the instantaneous concentrations of the reactants into the rate law equation, we can calculate the instantaneous reaction rate at a specific moment in time.
The rate of change in position at a given point in time is instantaneous speed, instantaneous velocity.
The rate of change in position at a given point in time is instantaneous speed, instantaneous velocity.
The rate of change in position at a given point in time is instantaneous speed, instantaneous velocity.
Finding the rate of change - in particular, the instantaneous rate of change.
At a given moment in time, instantaneous speed can be thought of as the magnitude of the instantaneous velocity of an object. Instantaneous velocity is the rate of change of an object's position at that specific moment in time.
Instantaneous velocity represents the rate of change of an object's position at a specific moment in time, while instantaneous acceleration represents the rate of change of an object's velocity at a specific moment in time. In other words, velocity measures how fast an object is moving, while acceleration measures how fast the object's velocity is changing.
The instantaneous rate of a reaction at t=800 seconds can be determined by calculating the slope of the tangent line to the concentration-time curve at that specific point in time. This slope represents the rate of the reaction at that moment, giving you the instantaneous rate at t=800 seconds.
Magnificent
Ah, honey, you're talking about velocity! Velocity is the rate of change in position at a specific point in time. It's like speed dating for math - how fast an object is moving at any given moment. So next time someone asks about the rate of change in position, you can confidently say, "Oh, that's just velocity, darling."
No, velocity is the instantaneous speed of an object, the rate of change would be the acceleration of the object.