Want this question answered?
When a muscle cell responds to a stimulus, calcium is released from the sarcoplasmic reticulum. This calcium binds to troponin, triggering a conformational change that allows myosin to bind to actin and initiate muscle contraction.
Calcium is released from the sarcoplasmic reticulum inside the muscle cell when a nerve signal triggers the release of calcium ions. This calcium binds to troponin on the actin filaments, which activates the contraction process in the muscle cell.
The organelle that stores calcium in resting muscle cells is the sarcoplasmic reticulum. Calcium ions are released from the sarcoplasmic reticulum during muscle contraction to trigger muscle activity.
The triad in muscle contraction consists of a T-tubule and two terminal cisternae of the sarcoplasmic reticulum. It plays a critical role in muscle excitation-contraction coupling by allowing the action potential to be rapidly transmitted deep into the muscle fiber and triggering the release of calcium ions from the sarcoplasmic reticulum, which are essential for muscle contraction.
Calcium ions are normally stored in the terminal cisternae of the sarcoplasmic reticulum in muscle cells. When muscle contraction is initiated, these stored calcium ions are released into the cytoplasm, triggering muscle contraction.
During the latent period of muscle contraction Ca++ is being released from the sacroplasmic reticulum and filament movement is taking up slack. This takes approx. 2 milliseconds.
The immediate source of calcium ion for muscle fiber is the sarcoplasmic reticulum, a specialized organelle within muscle cells that stores and releases calcium ions in response to nerve signals. When a muscle cell is stimulated, calcium ions are rapidly released from the sarcoplasmic reticulum into the cytoplasm, triggering muscle contraction.
The structure within skeletal muscle cells responsible for calcium storage is the sarcoplasmic reticulum. It stores and releases calcium ions, which are crucial for muscle contraction and relaxation. When a muscle cell receives a signal to contract, calcium is released from the sarcoplasmic reticulum, allowing the muscle to shorten and generate force.
Calcium ions are the key chemicals involved in muscle contraction. When a muscle is stimulated, calcium is released from the sarcoplasmic reticulum within the muscle cell, leading to the sliding of actin and myosin filaments which results in muscle contraction. ATP is also required for the energy needed for muscle contraction.
When depolarization occurs in the sarcoplasm of muscle cells, calcium ions (Ca2+) are released from the sarcoplasmic reticulum. This release triggers muscle contraction by allowing actin and myosin filaments to interact and generate force.
The interaction between actin and myosin filaments in muscle cells shortens the sarcomere during a contraction. Calcium ions released from the sarcoplasmic reticulum trigger this interaction, leading to the sliding of actin filaments over myosin filaments and shortening of the muscle fiber.
Calcium binding to actin-myosin causes contraction. The calcium is released to the sarcomere from a specialized storage organelle, the sarcoplasmic reticulum.