1. Arrangement of thick and thin filaments: In each sarcomere two sets of actin filaments extend partway toward the center. The myosin filaments are arranged such that they partially overlap the actin filaments. Myosin heads on each side point away from the center of the sarcomere.
2. During contraction, the interaction of myosin heads with the actin filaments pulls the thin filaments toward the center of the sarcomere. The actin and myosin filaments slide past each other.
3. Cross-bridges = attachement betwn myosin heads and binding sites on actin filaments.
4. When a muscle cell is stimulated, myosin heads are energized by ATP. They attach to adjacent actin filaments, and tilt in a short "power stroke" toward the center of the sarcomere. Each power sroke requires an ATP. With many power strokes in rapid succession, the actin filaments are made to slide past the myosin filaments.
1. Arrangement of thick and thin filaments: In each sarcomere two sets of actin filaments extend partway toward the center. The myosin filaments are arranged such that they partially overlap the actin filaments. Myosin heads on each side point away from the center of the sarcomere.
2. During contraction, the interaction of myosin heads with the actin filaments pulls the thin filaments toward the center of the sarcomere. The actin and myosin filaments slide past each other.
3. Cross-bridges = attachement betwn myosin heads and binding sites on actin filaments.
4. When a muscle cell is stimulated, myosin heads are energized by ATP. They attach to adjacent actin filaments, and tilt in a short "power stroke" toward the center of the sarcomere. Each power sroke requires an ATP. With many power strokes in rapid succession, the actin filaments are made to slide past the myosin filaments.
The structure that runs the length of the sarcomere through the thick filaments and contributes to the elastic recoil in muscle is the protein titin. Titin acts as a molecular spring, providing elasticity to the muscle and helping it return to its original length after contraction.
Sarcomere
The thick filaments (made of myosin) do not change length during shortening of the sarcomere. They slide past the thin filaments (made of actin) to generate muscle contraction.
The sarcomere, which is the basic contractile unit of a muscle, shortens in length when myofilaments contract. The myosin heads pull on the actin filaments, causing them to slide past each other and overlapping more, resulting in muscle contraction.
The length of the sarcomere itself decreases when it shortens. Sarcomeres are the basic contractile units of muscles and consist of overlapping thick and thin filaments that slide past each other, leading to muscle contraction.
The A band is a region in a sarcomere that contains thick myosin filaments. It remains the same length during muscle contraction as it corresponds to the length of the myosin filaments. The A band also contains some overlapping thin actin filaments.
Sarcomere
The sarcomere itself will become shorter.The sarcomere will shorten.
area in the muscle between the two Z discs.
The interactions between actin and myosin filaments of the sarcomere are responsible for muscle contraction. Myosin heads bind to actin filaments, forming cross-bridges that pull the actin filaments towards the center of the sarcomere. This sliding action shortens the sarcomere, leading to muscle contraction.
Sarcomere
Sarcomere