answersLogoWhite

0


Best Answer

no, the statement is false; in fact, the propagation of a neural signal in a myelinated axon is FASTER than in an axon which lacks a myelin sheath.

And the reason it's faster in a myelinated axon has to do with the fact that the myelin sheath is NOT a continuous covering on an axon, but rather a series of sections of wrappings around the axon separated by small gaps, like elongated beads on a string.

Wrappings of glia (oligodendrocytes in the brain, Schwann cells in the peripheral nervous system), which contain myelin, cover repeating sections of the axon and prevent any voltage gated ion pores under them from allowing more sodium ions into the axon at those places; but electrotonic conduction (basically the very fast electrostatic repulsive pushing of sodium ions under the wrap by the sodium ions which did enter the axon just before the myelin wrap) does occur, and although it weakens somewhat as it progresses, it's strong enough over the short distance of the wrappings to stimulate the voltage gated ion pores present in the succeeding gaps between the myelin wrappings to open and allow more sodium ions in, which re-strengthens the impulse as an action potential.

The result is that the neural impulse in a myelinated axon consists of a repeating series of action potentials in the gaps between myelin wraps, which are relatively slow to occur but replenish the strength of the impulse, and a similar repeating series of electrotonic conductions under the myelin wraps which occur faster than the action potential, such that the impulse reaches its final destination faster than it would as a pure action potential, but as strong at its destination as if it were just an action potential.

This impulse propagation by a combination of action potentials in the gaps and electrotonic conduction under the glia is called saltatory conduction.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is the propagation of an action potential is slower in myelinated axons than that lack a myelin sheath true?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Do action potential transmission is faster in myelinated neurons?

TRUE. Neurons with myelin (or myelinated neurons) conduct impulses much faster than those without myelin.


Where is the axon not insulated with myelin?

The axon is not insulated with myelin at the nodes of Ranvier. These are small gaps along the axon where the myelin sheath is absent and allow for faster propagation of action potentials by saltatory conduction.


How does the myelin sheath affect the speed of action potential?

Myelin sheath does several things that affect the speed of an action potential.It acts as an insulator around a neuron axon, thereby focusing the propagation of the action potential along the axis of the axon.The action potential "leaps" from one node of Ranvier (the node in between two myelinated segments) to the next, and to the next, and to the next, and so on, faster than the action potential can propagate as a wave along an unmyelinated axon of the same diameter.The regions along a myelinated axon depolarize locally and successively, thus allowing an action potential to travel along an axon using less energy, which in turn allows the neuron to repolarize more quickly, and thus be ready to conduct the next action potential sooner, thereby increasing the overall speed of information transmission.


How the saltatory conduction works?

Saltatory conduction is a process by which action potentials "jump" from one Node of Ranvier to another along a myelinated axon, effectively speeding up the transmission of electrical signals. The myelin sheath insulates the axon, forcing the action potential to only occur at the Nodes of Ranvier, where the ion channels are concentrated. This allows for faster propagation of the action potential compared to continuous conduction along unmyelinated axons.


What type of axon propagates an action potential faster?

Myelinated axons propagate action potentials faster compared to unmyelinated axons. This is because the myelin sheath insulates the axon and helps the action potential "jump" from one node of Ranvier to the next, a process called saltatory conduction.


Which impulses are faster myelinated or unmyelinated?

Myelinated nerves conduct impulses faster than unmyelinated nerves. The myelin sheath acts as an insulator that allows for faster transmission of nerve signals by increasing the speed at which the action potential travels down the axon.


Are muscles and glands myelinated?

Muscles and glands are not myelinated. It is the axon of a neuron that is myelinated. The myelin forms a layer called myelin sheath that makes the nervous system function properly.


How does a myelin sheath affect nerve impulses?

A myelin sheath acts as an insulating layer around nerve fibers, which helps to increase the speed at which nerve impulses can travel along the neuron. This is because the myelin sheath allows for a process called saltatory conduction, where the nerve impulse "jumps" between gaps in the myelin sheath called nodes of Ranvier, rather than traveling continuously along the entire length of the nerve fiber.


Where are voltage gated sodium channels concentrated in myelinated axon?

In myelinated axons, the voltage gated sodium ions are located along the nodes of Ranvier, the exposed places between the myelin segments. The gates here, however, are not particularly more concentrated than on other un-myelinated axons. TRUE


Does action potentials occur at nodes?

Yes, action potentials occur at the nodes of Ranvier in myelinated neurons. The myelin sheath insulates the axon, forcing the action potential to jump from node to node, a process known as saltatory conduction. This allows for faster conduction of the action potential along the axon.


Why node of ranvier is present on myelinated axon?

Nodes of Ranvier are present on myelinated axons to allow for saltatory conduction, where the action potential jumps rapidly between nodes to increase the speed of conduction. By having gaps in the myelin sheath at the nodes of Ranvier, the action potential is able to regenerate at these points, leading to faster transmission of electrical signals along the axon.


What type of axon allows saltatory conduction?

Myelinated axons allow for saltatory conduction, which is a faster method of transmitting action potentials. The myelin sheath insulates the axon and allows the action potential to "jump" from one node of Ranvier to the next, speeding up the process. Unmyelinated axons do not support saltatory conduction.