(mayb 2 long?) Many hypotheses in sciences such as physics can experiment causality by noting that, until some phenomenon occurs, nothing happens; then when the phenomenon occurs, a second phenomenon is observed. But often in science, this situation is difficult to obtain. For example, in the old joke, someone claims that they are snapping their fingers "to keep the tigers away"; and justifies this behavior by saying "see - its working!" While this "experiment" does not falsify the hypothesis "snapping fingers keeps the tigers away", it does not really support the hypothesis - not snapping your fingers does not keep the tigers away as well. To demonstrate a cause and effect hypothesis, an experiment must often show that, for example, a phenomenon occurs after a certain treatment is given to a subject, and that the phenomenon does not occur in the absence of the treatment. (See Baconian method.) Standard curve
A controlled experiment generally compares the results obtained from an experimental sample against a controlsample, which is practically identical to the experimental sample except for the one aspect whose effect is being tested (the independent variable). A good example would be a drug trial. The sample or group receiving the drug would be the experimental one; and the one receiving the placebo would be the control one. In many laboratory experiments it is good practice to have several replicate samples for the test being performed and have both a positive control and a negative control. The results from replicate samples can often be averaged, or if one of the replicates is obviously inconsistent with the results from the other samples, it can be discarded as being the result of an experimental error (some step of the test procedure may have been mistakenly omitted for that sample). Most often, tests are done in duplicate or triplicate. A positive control is a procedure that is very similar to the actual experimental test but which is known from previous experience to give a positive result. A negative control is known to give a negative result. The positive control confirms that the basic conditions of the experiment were able to produce a positive result, even if none of the actual experimental samples produce a positive result. The negative control demonstrates the base-line result obtained when a test does not produce a measurable positive result; often the value of the negative control is treated as a "background" value to be subtracted from the test sample results. Sometimes the positive control takes the quadrant of a standard curve. An example that is often used in teaching laboratories is a controlled protein assay. Students might be given a fluid sample containing an unknown (to the student) amount of protein. It is their job to correctly perform a controlled experiment in which they determine the concentration of protein in fluid sample (usually called the "unknown sample"). The teaching lab would be equipped with a protein standard solution with a known protein concentration. Students could make several positive control samples containing various dilutions of the protein standard. Negative control samples would contain all of the reagents for the protein assay but no protein. In this example, all samples are performed in duplicate. The assay is a colorimetric assay in which a spectrophotometer can measure the amount of protein in samples by detecting a colored complex formed by the interaction of protein molecules and molecules of an added dye. In the illustration, the results for the diluted test samples can be compared to the results of the standard curve (the blue line in the illustration) in order to determine an estimate of the amount of protein in the unknown sample. Controlled experiments can be performed when it is difficult to exactly control all the conditions in an experiment. In this case, the experiment begins by creating two or more sample groups that are probabilistically equivalent, which means that measurements of traits should be similar among the groups and that the groups should respond in the same manner if given the same treatment. This equivalency is determined by statistical methods that take into account the amount of variation between individuals and the number of individuals in each group. In fields such as microbiology and chemistry, where there is very little variation between individuals and the group size is easily in the millions, these statistical methods are often bypassed and simply splitting a solution into equal parts is assumed to produce identical sample groups. Once equivalent groups have been formed, the experimenter tries to treat them identically except for the one variablethat he or she wishes to isolate. Human experimentation requires special safeguards against outside variables such as the placebo effect. Such experiments are generally double blind, meaning that neither the volunteer nor the researcher knows which individuals are in the control group or the experimental group until after all of the data have been collected. This ensures that any effects on the volunteer are due to the treatment itself and are not a response to the knowledge that he is being treated. In human experiments, a subject (person) may be given a stimulus to which he or she should respond. The goal of the experiment is to measure the response to a given stimulus by a test method. The term "experiment" usually implies a controlled experiment, but sometimes controlled experiments are prohibitively difficult or impossible. In this case researchers resort to natural experiments, also called quasi-experiments. Natural experiments rely solely on observations of the variables of the system under study, rather than manipulation of just one or a few variables as occurs in controlled experiments. To the degree possible, they attempt to collect data for the system in such a way that contribution from all variables can be determined, and where the effects of variation in certain variables remain approximately constant so that the effects of other variables can be discerned. The degree to which this is possible depends on the observed correlation between explanatory variables in the observed data. When these variables are not well correlated, natural experiments can approach the power of controlled experiments. Usually, however, there is some correlation between these variables, which reduces the reliability of natural experiments relative to what could be concluded if a controlled experiment were performed. Also, because natural experiments usually take place in uncontrolled environments, variables from undetected sources are neither measured nor held constant, and these may produce illusory correlations in variables under study. Much research in several important science disciplines, including economics, political science, geology, Paleontology, ecology, meteorology, and astronomy, relies on quasi-experiments. For example, in astronomy it is clearly impossible, when testing the hypothesis "suns are collapsed clouds of hydrogen", to start out with a giant cloud of hydrogen, and then perform the experiment of waiting a few billion years for it to form a sun. However, by observing various clouds of hydrogen in various states of collapse, and other implications of the hypothesis (for example, the presence of various spectral emissions from the light of stars), we can collect data we require to support the hypothesis. An early example of this type of experiment was the first verification in the 1600s that light does not travel from place to place instantaneously, but instead has a measurable speed. Observation of the appearance of the moons of Jupiter were slightly delayed when Jupiter was farther from Earth, as opposed to when Jupiter was closer to Earth; and this phenomenon was used to demonstrate that the difference in the time of appearance of the moons was consistent with a measurable speed.
experiment
a controlled experiment is an experiment that has an iv, dv, and a control, is in a well handled environment, and the experiment is safely done.
Controlled Experiment was created on 1964-01-13.
Testing a hypothesis under controlled condition is a scientific experiment.
An investigation in science that is controlled is an experiment. The group within the experiment that is controlled is the control group. A control experiment is designed to check or correct the results of a previous experiment. It does this by removing the variable or variables operating in the other experiment. The comparison obtained is an indication or measurement of the effect of the variables concerned
controlled experiment
experiment
A controlled experiment is better than a none controlled experiment because you can control one of them and the other you can't. Science is a really fun subject.
An investigation in science that is controlled is an experiment. The group within the experiment that is controlled is the control group.
a controlled group is like an idea but an experiment that is controlled cannot be changed.
A controlled experiment is an experiment where there are limited or no variables other than the one you are testing for.
An investigation in science that is controlled is an experiment. The group within the experiment that is controlled is the control group.
the new drug has been developed. Through many controlled studies and researches.
a controlled experiment is an experiment that has an iv, dv, and a control, is in a well handled environment, and the experiment is safely done.
a controlled experiment
A controlled experiment
a controlled experiment