reversed itself in the past. hth :)
At divergent plate boundaries the spreading of the tectonic plates results in the reduced pressure of the underlying magma. As the spreading continues, lava fills in the area of spreading and cools, becoming the newest addition to the seafloor. This process occurs at a steady rate ranging from a few centimeters to several centimeters of new sea floor each year. However, at a different location opposite the newly formed seafloor are convergent plate boundaries where land and seafloor is destroyed to make room for new seafloor.
seafloor spreading by Harry Hess
The region where the seafloor is forced beneath the continental plate is called a subduction zone. When the seafloor descends down it produces a deep-ocean trench.
Benthic Realm
Because of the stripes at the sea floor which are magnetic minerals
The seafloor exhibits magnetic reversal due to the alignment of magnetic minerals in the lava as it solidifies at mid-ocean ridges. As the Earth's magnetic field flips over time, this record is preserved in the oceanic crust. In contrast, continental rocks are less likely to preserve such a record because they are mostly composed of different types of minerals that do not align with the Earth's magnetic field in the same way.
Magnetic bands provide evidence of seafloor spreading at mid-oceanic ridges because Earth's magnetic field periodically reverses. As new seafloor forms at the ridge and cools, magnetic minerals in the rocks align with the prevailing magnetic field. This creates a pattern of magnetic stripes on either side of the ridge that reflects the history of Earth's magnetic field reversals and the process of seafloor spreading.
iron bearing minerals can record Earth's magnetic field direction. when Earth's magnetic field reverses, newly formed iron bearing minerals will record the magnetic reversal. magnetic reversals show new rock being formed at mid-ocean ridges. This helped explain how the crust could move
Paleomagnetic patterns on the seafloor are caused by the movement of tectonic plates. As the seafloor spreads at mid-ocean ridges, molten rock solidifies to form new crust containing minerals aligned with the Earth's magnetic field. Over time, Earth's magnetic field reverses, leaving a record of these changes in the seafloor's magnetic stripes.
Magnetism is used to support the theory of seafloor spreading through the study of magnetic stripes on the seafloor. These stripes are aligned with the Earth's magnetic field and provide evidence for the process of seafloor spreading, where new oceanic crust is formed at mid-ocean ridges. As the crust cools and solidifies, the magnetic minerals in the rocks align with the Earth's magnetic field, creating a record of magnetic reversals over time that support the theory of seafloor spreading.
A magnetometer is a sensitive device used to detect magnetic fields on the seafloor. It measures the strength and direction of magnetic fields, which can provide valuable information about the geological structure of the seafloor and help in identifying magnetic anomalies caused by different rock types or mineral deposits.
They proved that the seafloor was spreading.
The Earth's magnetic reversals have been recorded in newly forming oceanic seafloor basalt by the orientation of magnetic minerals which become frozen in place as the magma hardens. When the next reversal occurs, it as well becomes part of the ocean floor magnetic record.
Magnetic stripes on the seafloor provide evidence for seafloor spreading because they show alternating bands of normal and reversed polarity along mid-ocean ridges. These stripes form as new oceanic crust is created at mid-ocean ridges, with the Earth's magnetic field aligning minerals in the crust in the direction of the prevailing polarity at the time of its formation. By collecting and analyzing samples from the ocean floor, scientists can observe these magnetic patterns and confirm the process of seafloor spreading over geologic time scales.
No, rocks on the seafloor do not all align according to the same magnetic field orientation. The Earth's magnetic field has shifted over time, causing rocks to record different orientations depending on when they formed. This creates magnetic anomalies that scientists use to study the history of the Earth's magnetic field.
Magnetic strips on the seafloor are caused in part by seafloor spreading, where new oceanic crust is formed at mid-ocean ridges. As the crust cools and solidifies, it locks in the polarity of the Earth's magnetic field at the time, creating a recorded history of magnetic reversals. This process creates alternating stripes of normal and reversed polarity as the seafloor expands.