answersLogoWhite

0

Physiological similarities suggest the species evolved from the same ancestor.

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

What is the biochemical evidence that supports evolution?

DNA


What are the five evidence of evolution are?

biochemical evidence anatomical evidence fossils vestigial structure embryological evidence


Why is biochemical evidence of evolution considered to be indirect?

Biochemical evidence of evolution is considered indirect because it does not provide direct evidence of specific evolutionary events or transitions in the fossil record. Instead, it demonstrates similarities in molecular structures or sequences across different species, which support the idea of a common ancestor but do not directly show the process of evolution occurring.


Why is biochemical evidence of evolution considered to be ibdirect?

Biochemical evidence of evolution is considered indirect because it does not provide direct observation of evolutionary changes happening over time. Instead, it relies on comparing similarities and differences in biochemistry, such as DNA sequences or protein structures, to infer evolutionary relationships among organisms.


How is the biochemical evidence of protein comparisons used in determining evolotionary history?

When the protein structure changes there has been evolution in the organism


Compare morphological and biochemical evidence supporting evolution?

The morphological evidence which is shown in fossils to modern animals supports evolution because some dinosaurs, for instance, had feathers and we can obviously see that trait today in birds. The biochemical evidence, which comes in the form of DNA comparison and amino acid similarities, shows that we related closely to monkeys and pigs, which suggests that we have close ancestors to these animals.


What is the biochemical evidence that supports biological evolution?

One key piece of biochemical evidence that supports biological evolution is the similarity in DNA sequences among different species. By comparing the DNA sequences of organisms, scientists can uncover evolutionary relationships and common ancestry. Additionally, the presence of vestigial structures and shared biochemical pathways among different species further support the idea of a common evolutionary origin.


What biochemical evidence is there supporting evolution?

One key piece of biochemical evidence supporting evolution is the similarity of genetic material across different species. For example, DNA analysis shows a high degree of similarity in the genes of humans and other primates, supporting the idea of a common ancestor. Additionally, the presence of vestigial structures and genes in organisms further supports the idea of evolution, as these features are remnants from ancestral forms.


How is biochemical similarities supports evolution?

Biochemical similarities among different species, such as shared genetic sequences and metabolic pathways, provide evidence for a common ancestry and evolutionary relationships. These similarities suggest that organisms have evolved from a common ancestor and have undergone genetic changes over time. Studying biochemical similarities helps scientists understand the processes of evolution and how species have diversified and adapted to their environments.


How does biochemical evidence support evolution?

Biochemical evidence, such as comparing DNA sequences or protein structures, can help confirm evolutionary relationships between different species by showing similarities in genetic material. This shared genetic information suggests a common ancestry and evolutionary history among organisms. Additionally, studying biochemical pathways can reveal how genetic changes have occurred over time, leading to the diversity of organisms we see today.


What are some examples of direct evidence for evolution?

Polyploidy in plants, for one instance the doubling of chromosomes at mating, is direct evidence not only for evolution but for speciation as well. I fact many to most modern angiosperm species are developed this way.


Why do phylogenetic trees provide evidence of evolution?

With the nested hierarchy of phylogenetic trees in front of you, showing in general relief the biochemical, physiological, behavioral relatedness extended from the forked nodes, and going along through time one sees evolution in action. Change over time.