Inductive reactance.
'Reactance' is the name given to the opposition to the flow of alternating current, due to the inductance of a load and the frequency of the supply voltage. It is measured in ohms.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.
That's the component to use wherever a capacitive reactance equal to -j(159,155/frequency) is required.
Xc(capacitive reactance) = 1/(2piFC)XL(inductive reactance) = 2piFLWhere pi=3.14etc.,F=frequency and C and L are capacitance and inductance.Please pardon lack of proper symbology.
No!
Inductive reactance, as well as capacitive reactance, is measured in ohms.
Inductive reactance.
The reciprocal of reactance is susceptance, expressed in siemens.
The symbol for inductive reactance is XL.
The quantity symbol for reactance is X.
'Reactance' is the name given to the opposition to the flow of alternating current, due to the inductance of a load and the frequency of the supply voltage. It is measured in ohms.
for inductor, reactance XL = 2*pi* f *L, if frequency doubles then reactance increase. But for capacitor, reactance Xc = 1/(2*pi*f*C). In this case if frequency doubles the reactance decrease.
The overall reactance of the armature winding is the sum of its leakage reactance plus fictitious reactance, which is known as synchronous reactance (Xs).Xs=XL+Xarwhere XL and Xar are in Ω/phase. Therefore, Xs is in Ω/phase.The impedance of armature winding is obtained by combining its resistance and its synchronous reactance.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.
Because it is. Capacitive reactance is a form of resistance, along with inductive reactance. All are measured in ohms.
Inductive reactance, as well as capacitive reactance, is measured in ohms.