answersLogoWhite

0

Knowing the polarity of Transformers is important if they are to be connected in parallel.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: What is the aim of doing polarity test on the transformer?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Is a transformer heat neutral?

All transformers produce some heat, and reducing the heat is an design aim in transformers because heat, like all energy, costs money. Heat losses can be reduced in a transformer by using thicker copper wire in the windings and a thicker iron magnetic core. Obviously there is an optimum somewhere in the middle that transformer designers aim for.


Is HTML a language designed to improve the presentation of text?

No, HTML's aim was to create a markup language for web. It has succeeded in doing so by taking the market by storm.


Why unity power factor is used in load test?

When power factor is at unity, the voltage and current waves are aligned or in phase with one another. Since power is the product of voltage and current, power transfer is maximized at unity power factor. When power is transmitted at a lower power factor, greater current is required to deliver the same amount of power. When current is increased, the size of the transmission, distribution and generation systems, all have to be increased accordingly, along with the price of the killowatt-hour at the meter.


How does the amount of load affect the efficiency of a transformer?

A transformer is a device in which two circuits are coupled by a magnetic field that is linked to both. There is no conductive connection between the circuits, which may be at arbitrary constant potentials. Only changes in one circuit affect the other. The circuits often carry at least approximately sinusoidal currents, and the effect of the transformer is to change the voltages, while transferring power with little loss. Sinusoidal excitation is not necessary, and transformers may handle arbitrary signals, in which the action can be considered as a transformation of impedances. The magnetic field coupling the circuits can be in air, but is usually in a ferromagnetic material, the core, in which the field can be thousands of times greater than it would be in air, making the transformer efficient and small. The transformer is an honorary electrical "machine" in which the flux changes occur by variation in currents with time, instead of by motion.Most transformers with iron cores can be considered as ideal when you use them. An ideal transformer has no losses, an aim that is closely attained in practice, so the energy transfer from the primary circuit to the secondary circuit is perfect. The diagram represents such a transformer, showing the core with magnetic flux φ, the primary winding of N1 turns, and the secondary winding of N2 turns. The reference directions for the voltages and currents at the terminals are shown. All of these quantities are to be considered as phasor amplitudes, varying sinusoidally with time. Note the dots at one or the other of the terminals of each winding. Currents entering the dotted terminals produce flux in the same direction, the direction shown. The current and voltage ratios are equal to the turns ratio. This means that the power factor (cosine of the phase angle), and the power, are the same at input (primary) and output (secondary). These things you probably already know, and we will not explore their consequences further.The diagram shows the usual schematic way to represent a transformer. In an actual transformer, the windings are wound on top of each other, not on separate legs, to reduce leakage flux. In the usual shell-type transformer, both primary and secondary are on one leg, and are surrounded by the core. A core-type transformer has windings covering the core legs.In order to design a transformer, or to examine in more detail how it departs from ideality, it is necessary to understand how a transformer works, not just how to express its terminal relations in an approximate way. It is also important to know how the properties of the iron core affect the performance of the transformer. A real transformer becomes hot because of losses, and the ouput voltage may vary with load even when the primary voltage is held constant.The mutual flux φ is the means of transfer of energy from primary to secondary, and links both windings. In an ideal transformer, this flux requires negligibly small ampere-turns to produce it, so the net ampere-turns, primary plus secondary, is about zero. When a current is drawn from the secondary in the positive direction, ampere-turns decrease substantially. This must be matched by an equal increase in primary ampere-turns, which is caused by an increase in the current entering the primary in the positive direction. In this way, the back-emf of the primary (the voltage induced in it by the flux φ) equals the voltage applied to the primary, as it must. This fundamental explanation of the operation of a transformer must be clearly understood before proceeding further.


What is an aim of heating and cooling curves of water?

beard