There are two expressions of the relationship between power and resistance. They are P = I2 x R (power equals current squared times resistance) and P = E2 / R (power equals voltage squared divided by resistance).
Cell constant(C) = Resistance(R) X Specific Conductivity(K)
To figure the resistance of a substance in ohms, more information would be needed. Resistance is calculated by (resistivity)*(length)/(cross sectional area). First consider a wire conductor. Electrical resistivity is a property of the substance (it usually will vary with temperature). The thicker a wire is (larger cross sectional area) will lower the resistance. The longer the wire will increase the resistance. Now consider water. There is no 'wire' so the cross sectional area of whatever conductor is in contact with the wire will be a factor. A second conductor will need to be in contact with the water to complete the current path. The distance between the conductors is the length. Resistivity has a unit of ohms*meters; when divided by area and multiplied by length, the resulting unit is ohms. The reciprocal of resistivity is conductivity, which has units of Siemens/meter (Siemens is equivalent to 1/Ohms) I have posted a link to the Wikipedia article, listing conductivity values for several conducting elements (and water as well). Pure water with no impurities actually has a very high resistivity (low conductivity, which means not much current will flow). Pure water is not very common, and the type and amount of impurities affects the conductivity of the water sample. Conductivity of typical drinking water is in the range: 0.0005 to 0.05 Siemens per meter, so the reciprocal (resistivity) is 2000 Ohm*meters to 20 Ohm*meters. Note from the same chart that deionized water has a conductivity of 5.5 × 10-6 Siemens/meter --> resistivity = 181,818 ohm*meters.
Specific resistivity is directly proportional to area of cross section of the conductor and specific conductivity is the inverse of specific resistivity. So we can say , Specific conductivity is directly proportional to area of cross section of the conductor.
1)what is the relation of total dissolved solid and conductivity of water? 2)What is the difference of the conductivity of treated water and raw water?
conductivity and mobility both are directly propertional
No. In fact it is the opposite. Conductivity is the reciprocal of resistivity so a high resistivity means low conductivity. peace.
Oh, dude, it's like this: to convert conductivity to resistivity, you just take the reciprocal of the conductivity value. So, resistivity is equal to 1 divided by conductivity. It's like flipping a coin, but with numbers. Easy peasy, right?
The resistivity of water can be measured by using a device called a conductivity meter, which measures the electrical conductivity of the water. The higher the electrical conductivity, the lower the resistivity of the water.
No, metals have high conductivity but has low resistivity.
Conductivity is the inverse of resistivity. (i.e. conductivity = 1/resistivity) Resistivity is the resistance per metre of material. So a material will have a resistance of its length multiplied by its resistivity. So the resistance of an object is calculated from conductivity of the material from which it is made and its length by resistance = 1 / (conductivity * length) This makes no attempt to account for capacitance or inductance, so the impedance of a material would be calculated from conductivity as well as capacitance (or inductance) per unit length.
One can accurately measure water resistivity by using a device called a conductivity meter. This device measures the ability of water to conduct electricity, which is directly related to its resistivity. By measuring the electrical conductivity of water, one can determine its resistivity accurately.
Conductivity is the reciprocal of resistivity, and is expressed in siemens per metre (S/m). Resistivity and, therefore, conductivity vary with temperature so are usually quoted at a specified temperature.Resistance is expressed in ohms. If you accurately measure the resistance, length, and cross-sectional area of a conductor, then you could determine its resistivity and, from that, its conductivity.
Electrical resistivity of hafnium: 331 nanoohms.m
Electrical resistivity: 0, 40 microohm.meter.
Materials can be classified based on their resistivity as conductors, semiconductors, or insulators. Conductors have low resistivity, allowing electric current to flow easily. Semiconductors have resistivity in between conductors and insulators, and their conductivity can be controlled. Insulators have high resistivity and do not allow electric current to flow easily.
The resistivity of aluminum is approximately 2.65 x 10^-8 ohm meters, and its conductivity is approximately 3.77 x 10^7 siemens per meter. Aluminum is a good conductor of electricity due to its high conductivity.
Generally, materials that are harder tend to be less conductive, while materials that are softer tend to be more conductive. This is because the arrangement of atoms in harder materials makes it more difficult for electrons to move freely, leading to lower conductivity. However, there are exceptions to this general trend based on the specific properties of the material.