An antenna (or aerial) is an electrical device which converts electric currents into radio waves, and vice versa. It is usually used with a radio transmitter or radio receiver. In transmission, a radio transmitter applies an oscillating radio frequency electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception, an antenna intercepts some of the power of an electromagnetic wave in order to produce a tiny voltage at its terminals, that is applied to a receiver to be amplified. An antenna can be used for both transmitting and receiving.
Antennas are essential components of all equipment that uses radio. They are used in systems such as radio broadcasting, Broadcast Television, two-way radio, communications receivers, radar, cell phones, and satellite communications, as well as other devices such as garage door openers, wireless microphones, bluetooth enabled devices, wireless computer networks, baby monitors, and RFID tags on merchandise.
Typically an antenna consists of an arrangement of metallic conductors ("elements"), electrically connected (often through a transmission line) to the receiver or transmitter. An oscillating current of electrons forced through the antenna by a transmitter will create an oscillating magnetic field around the antenna elements, while the charge of the electrons also creates an oscillating electric field along the elements. These time-varying fields radiate away from the antenna into space as a moving electromagnetic field wave. Conversely, during reception, the oscillating electric and magnetic fields of an incoming radio wave exert force on the electrons in the antenna elements, causing them to move back and forth, creating oscillating currents in the antenna.
Antennas may also contain reflective or directive elements or surfaces not connected to the transmitter or receiver, such as parasitic elements, parabolic reflectors or horns, which serve to direct the radio waves into a beam or other desired radiation pattern. Antennas can be designed to transmit or receive radio waves in all directions equally (omnidirectional antennas), or transmit them in a beam in a particular direction, and receive from that one direction only (directional or high gain antennas).
The first antennas were built in 1888 by German physicist Heinrich Hertz in his pioneering experiments to prove the existence of electromagnetic waves predicted by the theory of James Clerk Maxwell. Hertz placed dipole antennas at the focal point of parabolic reflectors for both transmitting and receiving.
Chat with our AI personalities
Electrically small antennas are always narrow-band. The bandwidth of a small antenna has a theoretical maximum defined by the Chu Limit.
I don't think it has. Bandwidth depends on the diameter to length ratio of the antenna. The greater the diameter of the elements the wider the bandwidth. The inductance goes down and the capacitance goes up, giving the antenna a lower Q. the folded dipole has a greater effective diameter (at least double for the same materials). You can increase a normal dipole's bandwidth by increasing the diameter, hence the old time birdcage aerials.
When the frequency sensitivity of the modulating signal is small,the bandwidth of the FM is narrow. The narrowband FM has one carrier term two sideband terms.The modulation index is also small compared to one radian.
Bandwidth is defined as difference between two frequencies.In AM only amplitude is modulated or changed to transmit the data at the given fixed frequency. In FM the frequency of the signal is changed to transmit the data. Since we will need a range of frequency to transmit the data using FM (say frequencies from f1 to f2), the bandwidth of FM signal will be higher than AM signal which can transmit at a fixed frequency.But.....The above answer does not address the issue of "strength of modulation", that is, modulation index.A.M. will always have a bandwidth of twice its highest modulating frequency regardless of the strength of modulation.For voice comms with about a 3 kHz maximum frequency, A.M. will demand (3+3) = 6 kHz of bandwidth.Because F.M. modulates the frequency swing of the transmitter, low modulation indexes with F.M. can give a bandwidth LESS than the maximum modulating frequency. Narrow-Band F.M. (NBFM) can have a bandwidth of *less than* 3 kHz, indeed it can have a bandwidth of only a few hundred hertz, in theory.In practice, very narrow NBFM suffers from worsening signal-to-noise ratios, and one of F.M.'s chief advantages over A.M. is the superior signal-to-noise of F.M. when it is allowed sufficient bandwidth.
A low bandwidth signal does not have more power.