answersLogoWhite

0

An electromotive force (e.m.f.) is the open-circuit, or no-load, potential difference provided by a source -such as a battery or generator. For a closed circuit, an e.m.f. is the sum of the voltage-drops around any closed loop, including the internal voltage drop of the source.

A potential difference (voltage) can exist across any circuit component. For example, the fact that current is flowing through each of several resistors in a series circuit means that there must be an individual potential difference across each of those resistors (which we also term 'voltage drop').

An electromotive force is the name we give to the open-circuit potential difference provided by a generator, battery, etc. For example, the open circuit potential difference of a battery would be its electromotive force.

So, if we use a series resistive circuit as an example, the battery would provide the electromotive force, while voltage drops would then appear across its internal resistance, and across each of the resistances. The magnitude of the electromotive force is then equal (but acting in the opposite sense) to the sum of the voltage drops, including the internal voltage drop.

Many textbooks use the symbol, E, to represent an electromotive force, and V to represent potential difference. So, Kirchhoff's Voltage Law, for example, will often be seen written as: E = V1 + V2 + V3 + etc.

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

What is the potential difference between two points in a circuit is called?

Voltage drop


Difference between voltage and emf?

'Voltage' is simply another term for 'potential difference', and an electromotive force is the open-circuit, or no-load, potential difference of a source such as a battery or generator.


Another name for EMF?

"Potential difference" or "Voltage".


What are the differences between potential difference and emf?

Potential difference is the difference in electric potential energy between two points in a circuit, while electromotive force (emf) is the total energy provided per unit charge by a battery or voltage source. In other words, potential difference measures the voltage drop across a component in a circuit, while emf represents the energy per unit charge supplied by the source.


Difference between back EMF and induced EMF?

An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!


It can be said that pressure and electromative force are the same?

There is analogy between pressure and EMF or voltage. What pressure is to the liquids, EMF or voltage is to electric current. But, of course, they are not the same.


A device that provides an emf?

An example of a device that provides an electromotive force (emf) is a battery. A battery produces a voltage difference between its terminals, which creates an electric current when connected to a circuit. This emf is the driving force that pushes electrons through the circuit.


What symbol is used to measure potential difference?

V which abbreviates the word volt, which is the unit of measure of the difference in electromotive force (EMF), (or electric potential) between two points of contact; the resulting voltage difference could be direct current (DC) or alternating current (AC) depending on the source of the voltage difference.


Can terminal potential difference be greater than the emf supplied?

No, the terminal potential difference cannot be greater than the emf supplied. The emf represents the maximum potential difference that the cell or battery can provide, while the terminal potential difference is the actual potential difference across the terminals when a load is connected.


What is the term for he phenomenon of emf development between two different metals placed in contact?

The term for the phenomenon of emf development between two different metals placed in contact is called the thermoelectric effect. This effect occurs because of the temperature difference between the two metals, which creates a potential difference or voltage.


What are the differences between emf and voltage drop?

emf and voltageAnswerElectromotive force is the potential difference created by a source, such as a battery or generator, when it is not connected to a load -in other words, on 'open circuit'.Voltage drop is the potential difference across a load, such as a resistor, which causes current to flow through that load.A voltage drop occurs, internally, in batteries and generators, when they are supplying a load. The battery or generator's terminal voltage, when supplying a load, is its e.m.f. less its internal voltage drop.


Another word for voltage?

electromotive force (abbreviation: EMF or emf)