Manipulate the following equation, to make I the subject: P = I2R, where P = power, I =current, and R = resistance.
Power=current squared times resistance
The fundamental equation for the power of any load is the product of the voltage across the load and the current through it: P = U I.Since voltage is the product of current and resistance (U = I R), we can substitute for voltage in the original equation:P = U I = (IR) I = I2R
Ohms Law is used for the measurement of resistance. You can find the resistance in a series circuit using this equation; amps=volts/resistance or volts=amps x resistance.The Power Law is used to find the wattage in the circuit. You can find the amount of watts using this equation: watts=volts x amps.CommentOhm's Law has nothing whatsoever to do with either resistance or power.The equation, R = E/I, is derived from the definition of the ohm, and not from Ohm's Law.Ohm's Law simply describes a linear relationship between the potential difference across a conductor and the current through it. It does NOT describe the relationship between potential difference, current, and resistance.
Power dissipated = I2R 0.022 x 1000 = 0.4 watts
The power in a circuit is determined by multiplying the square of the current flowing through the circuit by the resistance of the circuit. Without specific values for current and resistance provided, the precise power cannot be calculated.
Manipulate the following equation, to make I the subject: P = I2R, where P = power, I =current, and R = resistance.
Power = (energy used)/(time to use it)Power dissipated by an electrical circuit =(voltage across the circuit) x (current through the circuit)or(resistance of the circuit) x (square of the current through the circuit)or(square of the voltage across the circuit)/(resistance of the circuit)
Power is inversely proportional to resistance. Ohm's law: Current is voltage divided by resistance Power law: Power is voltage times current, therefore power is voltage squared divided by resistance.
Take your pick:P = V x I (Power = Voltage x Current)or:P = V2 / R (Power = Voltage2 / Resistance)or:P = I2 *R (Power = Current2 x Resistance)(the last two equations come from combining the ohms law equation R=V/I with the power equation P=VxI)In the question above you have resistance and current therefore:P = I2 *R = 0.0052 x 8.2k = 0.0052 x 8200 = 0.205W = 205mW
All resistances will emit heat energy when a current flows. The heat production rate (or power) can be found by any of these formulas: Power = Current * Voltage Power = Current2 * Resistance Power = Voltage2 / Resistance. Power is given in Watts when Current is in Amps, Voltage in Volts, and Resistance in Ohms.
Increasing the current in a circuit by a factor of 3 will increase the power by a factor of 9 (3^2), assuming the resistance remains constant. Power is directly proportional to the square of the current in a circuit with constant resistance, according to the equation P = I^2 * R.
If the resistance is 1.2k and the current is 0.024 ma, then the voltage is 0.0288 volts. (Voltage = resistance times current) If the voltage is 0.0288V and the current is 0.024 ma, then the power is 0.6912 microwatts. (Power = voltage times current)
No, the current is equal to the power (watts) divided by the voltage, based on the formula: current = power / voltage. Voltage divided by watts does not equal current.
Power=current squared times resistance
To find the current in the circuit, you can use the formula: Power = Current^2 * Resistance. Given the values, you can rearrange the formula to solve for current: Current = sqrt(Power / Resistance). Plugging in the values, you get Current = sqrt(2 / 30) which simplifies to approximately 0.27 amperes.
To calculate power lost as heat in electricity, you can use the formula P = I^2 * R, where P is the power lost in watts, I is the current in amps, and R is the resistance in ohms. This equation is based on Ohm's Law (P = V^2 / R) and Joule's Law (P = I^2 * R), which relate power, voltage, current, and resistance in an electrical circuit. By knowing the current and resistance in a circuit, you can determine the power lost as heat.