A postfix incrementation or decrementation is handled by the ++ and -- operators. Postfix specifically refers to adding the operator after the variable name (eg. i++). This will attempt to increase/decrease the data type by 1. It differs from prefix in that it will return the variable before the calculation.
Example:
int i = 1;
System.out.print(i++); //1
System.out.print(i); //2
infix: old Egyptians/Assirs some thousands year before prefix: Jan Łukasiewicz (Polish Notation) postfix: Burks, Warren, and Wright (Reverse Polish Notation)
people almost exclusively use infix notation to write mathematical expressions, computer languages almost exclusively allow programmers to use infix notation. However, if a compiler allowed infix expressions into the binary code used in the compiled version of a program, the resulting code would be larger than needed and very inefficient. Because of this, compilers convert infix expressions into postfix notation expressions, which have a much simpler set of rules for expression evaluation. Postfix notation gets its name from the fact that operators in a postfix expression follow the operands that they specify an operation on. Here are some examples of equivalent infix and postfix expressions Infix Notation Postfix Notation 2 + 3 2 3 + 2 + 3 * 6 3 6 * 2 + (2 + 3) * 6 2 3 + 6 * A / (B * C) + D * E - A - C A B C * / D E * + A C * - Where as infix notation expressions need a long list or rules for evaluation, postfix expressions need very few.
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)
Example: prefix: * 2 + 3 4 infix: 2 * (3+4) postfix: 2 3 4 + *
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)
infix: old Egyptians/Assirs some thousands year before prefix: Jan Łukasiewicz (Polish Notation) postfix: Burks, Warren, and Wright (Reverse Polish Notation)
(a + b) * c / ((x - y) * z)
people almost exclusively use infix notation to write mathematical expressions, computer languages almost exclusively allow programmers to use infix notation. However, if a compiler allowed infix expressions into the binary code used in the compiled version of a program, the resulting code would be larger than needed and very inefficient. Because of this, compilers convert infix expressions into postfix notation expressions, which have a much simpler set of rules for expression evaluation. Postfix notation gets its name from the fact that operators in a postfix expression follow the operands that they specify an operation on. Here are some examples of equivalent infix and postfix expressions Infix Notation Postfix Notation 2 + 3 2 3 + 2 + 3 * 6 3 6 * 2 + (2 + 3) * 6 2 3 + 6 * A / (B * C) + D * E - A - C A B C * / D E * + A C * - Where as infix notation expressions need a long list or rules for evaluation, postfix expressions need very few.
You convert an (infix) expression into a postfix expression as part of the process of generating code to evaluate that expression.
To convert an infix expression to a postfix expression in C programming, you can use the Shunting Yard algorithm. This algorithm allows you to scan the infix expression from left to right, and based on the precedence of operators, convert it to a postfix expression. You can use a stack to hold operators and output queue to store the final postfix expression. By following the algorithm, you can convert the infix expression to postfix successfully.
Yes
stack is the basic data structure needed to convert infix notation to postfix
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)
#include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #define size 400 using namespace std; char infix[size]="\0",postfix[size]="\0",Stack[size]; int top; int precedence(char ch) { switch(ch) { case '^':return 5; case '/':return 4; case '*':return 4; case '+':return 3; case '-':return 3; default:return 0; } } char Pop() { char ret; if(top!=-1) { ret=Stack[top]; top--; return ret; } else return '#'; } char Topelem() { char ch; if(top!=-1) ch=Stack[top]; else ch='#'; return ch; } void Push(char ch) { if(top!=size-1) { top++; Stack[top]=ch; } } int braces(char* s) { int l,r; l=0;r=0; for(int i=0;s[i];i++) { if(s[i]=='(') l++; if(s[i]==')') r++; } if(l==r) return 0; else if(l<r) return 1; else return -1; } int main() { char ele,elem,st[2]; int T,prep,pre,popped,j=0,chk=0; cin>>T; while(T--) { j=0;chk=0;top=-1; strcpy(postfix," "); cin>>infix; chk=braces(infix); if(chk==0) { for(int i=0;infix[i];i++) { if(infix[i]=='(') { elem=infix[i]; Push(elem); } else if(infix[i]==')') { while((popped=Pop())!='(') { postfix[j++]=popped; } } else if(infix[i]=='^'infix[i]=='/'infix[i]=='*'infix[i]=='+'infix[i]=='-') { elem=infix[i]; pre=precedence(elem); ele=Topelem(); prep=precedence(ele); if(pre>prep) Push(elem); else { while(prep>=pre) { if(ele=='#') break; popped=Pop(); ele=Topelem(); postfix[j++]=popped; prep=precedence(ele); } Push(elem); } } else { postfix[j++]=infix[i]; } } while((popped=Pop())!='#') postfix[j++]=popped; postfix[j]='\0'; cout<<postfix; } } }
Example: prefix: * 2 + 3 4 infix: 2 * (3+4) postfix: 2 3 4 + *
/**************************//**********cReDo**********//*****mchinmay@live.com***///C PROGRAM TO CONVERT GIVEN VALID INFIX EXPRESSION INTO POSTFIX EXPRESSION USING STACKS.#include#include#include#define MAX 20char stack[MAX];int top=-1;char pop();void push(char item);int prcd(char symbol){switch(symbol){case '+':case '-':return 2;break;case '*':case '/':return 4;break;case '^':case '$':return 6;break;case '(':case ')':case '#':return 1;break;}}int isoperator(char symbol){switch(symbol){case '+':case '-':case '*':case '/':case '^':case '$':case '(':case ')':return 1;break;default:return 0;}}void convertip(char infix[],char postfix[]){int i,symbol,j=0;stack[++top]='#';for(i=0;iprcd(stack[top]))push(symbol);else{while(prcd(symbol)
struct stack { char ele; struct stack *next; }; void push(int); int pop(); int precedence(char); struct stack *top = NULL; int main() { char infix[20], postfix[20]; int i=0,j=0; printf("ENTER INFIX EXPRESSION: "); gets(infix); while(infix[i]!='\0') { if(isalnum(infix[i])) postfix[j++]=infix[i]; else { if(top==NULL) push(infix[i]); else { while(top!=NULL && (precedence(top->ele)>=precedence(infix[i]))) postfix[j++]=pop(); push(infix[i]); } } ++i; } while(top!=NULL) postfix[j++]=pop(); postfix[j]='\0'; puts(postfix); getchar(); return 0; } int precedence(char x) { switch(x) { case '^': return 4; case '*': case '/': return 3; case '+': case '-': return 2; default: return 0; } } void push(int x) { int item; struct stack *tmp; if(top==NULL) { top=(struct stack *)malloc(sizeof(struct stack)); top->ele=x; top->next=NULL; } else { tmp=top; top->ele=x; top->next=tmp; } } int pop() { struct stack *tmp; int item; if(top==NULL) puts("EMPTY STACK"); else if(top->next==NULL) { tmp=top; item=top->ele; top=NULL; free(tmp); } else { tmp=top; item=top->ele; top=top->next; free(tmp); } return item; }