It's the ratio of the total power of the two motors and their total apparent power (input side, of course.)
For lamps in parallel, it's straightforward, as you only need to add the individual power ratings to find the total power rating and multiply this value for the time over which they operate, to determine the energy dissipation.For lamps in parallel, it's far more complicated. Lamps in parallel are not subject to their rated voltages and, so, cannot operate at their rated powers. In fact, the lamp with the lowest power rating will actually burn the brightest! Trying to calculate what is going on is further complicated by the fact that there is significant difference in the resistance of a lamp when it is operating at its operating temperature and when it is cold, and you cannot determine these resistances theoretically. So, while you can determine the answer to your question experimentally -by measuring the current and voltage- it is not practical to calculate the answer you are looking for.
If a 'parallel' circuit has more than one load in its (not "it's"!) branches, then it is not a parallel circuit, but a series-parallel circuit! To resolve the circuit, you must first resolve the total resistance of the loads within each branch.
In this case, to get the equivalent resistance, first you use the parallel formula (1/R = 1/R1 + 1/R2) to calculate the equivalent resistors in parallel. Then you calculate the series resistance of this combination, with the other resistor.
It will decrease the effective load resistance across the power supply terminals, increase the total current through the load, and increase the total power required to be supplied by the power supply.
In a parallel circuit, the total energy used is the sum of the energy used by each individual component in the circuit. You can calculate the energy used by each component using the formula: Energy = Power x Time. Add up the energy used by all components to find the total energy used in the parallel circuit.
It depends upon the resistance values. Series resistance is the summation of all of the resistances, but to calculate the parallel is more complicated. Once the total resistance of each configuration is known, find the total current for each then multiply the current by the source voltage and this will provide the power.
The total power equals the sum of the individual powers because power is the rate at which energy is supplied. Whether you have a series or parallel circuit, the total power comes from the power source.
Yes, the total power dissipated through the circuit is equal to the sum of the power of each branch in a parallel circuit.
It's the ratio of the total power of the two motors and their total apparent power (input side, of course.)
Separate devices should always be hooked up in parallel, and not series. Therefore, you would combine the total current requirement, which in this case is 600mA or 0.6A. You would therefore need a 9V power supply that is capable supplying at least 0.6A. It depends on whether the devices are connected in series or parallel or some combination of the two. The current in a series circuit is the same throughout the circuit. The current in a parallel circuit is the sum of the current in each parallel branch If the three devices are connected in series, the required current is 200mA. If the three devices are connected in parallel, the required current is 600mA The total power required by a circuit is the sum of the power consumed by each component. It doesn't matter if the devices are connected in series or parallel. Power = voltage x current. If the three devices are in series, the power consumed by one of them is 9 x .2 = 1.8 watts. The total power consumed is 1.8 x 3 = 5.4W If the three devices are connected in parallel, the power consumed is 9 x .6 = 5.4W Notice that the power consumed is the same for the series and parallel combination. The battery (or power supply) must be able to supply 5.4 watts.
For lamps in parallel, it's straightforward, as you only need to add the individual power ratings to find the total power rating and multiply this value for the time over which they operate, to determine the energy dissipation.For lamps in parallel, it's far more complicated. Lamps in parallel are not subject to their rated voltages and, so, cannot operate at their rated powers. In fact, the lamp with the lowest power rating will actually burn the brightest! Trying to calculate what is going on is further complicated by the fact that there is significant difference in the resistance of a lamp when it is operating at its operating temperature and when it is cold, and you cannot determine these resistances theoretically. So, while you can determine the answer to your question experimentally -by measuring the current and voltage- it is not practical to calculate the answer you are looking for.
The current that flows from and back to the power supply in a parallel circuit is called branch current. Each branch in a parallel circuit has its own current flow that combines to form the total current drawn from the power supply.
6
power supplied=sum of powers delivered to individual elements
To calculate the current running through the 60 ohm resistor in a parallel circuit, you first need to find the total resistance of the circuit. For a parallel circuit, the reciprocal of the total resistance (1/RT) is equal to the sum of the reciprocals of the individual resistances (1/R1 + 1/R2 + 1/R3). Once you find the total resistance, you can use Ohm's Law (I = V/R) to calculate the current running through the 60 ohm resistor.
You can calculate the total force in a system of parallel forces by adding up all the individual forces acting in the same direction. Simply sum the magnitudes of the individual forces to find the total parallel force.