It does have armature resistance.
.The magnitude of the voltage and current of both the armature and shunt field coil. To decrease the speed when the load is increasing then increase the shunt field current while decreasing the armature voltage or current. To increase the speed while the load is increasing then increase the armature current while decreasing the shunt field current. The decreasing and increasing of these currents and voltages can be done by connecting a variable resistor in series or parallel with each of the armature and/or shunt field coil.
You have a seperately excited generator and then you have a shunt generator which has the field winding in parallel with the armature terminals. In DC machines a separately excited generator could be run as a shunt generator provided the field winding is designed to work on the generated voltage. A separately excited alternator needs a DC supply for the field winding. In car alternators that is taken from the main winding via a rectifier and a voltage regulator.
In long shunt the shunt field winding is in parallel to both generator and series field. In short shunt the shunt field is in parallel to generator only.
To ensure that the Lathe machine's motor working properly, DC motor starter is added in which it used to protect motor against damage from: • short-circuit, • long term overload, • excessive starting current, and yet to made the operating speed of motor easily to be control by operator. During starting, the motor is not turning, hence there is no internal voltage .The internal resistance is very low and thus the current flow through is very high. This condition may cause damage to the motor Hence, a staring resistor is added in which connect in series with the armature to limit the current flow until the internal voltage of motor is increasing to do the limiting. In order to prevent losses as the speed of the motor is build up; the starting resistor should be removed
It does have armature resistance.
A shunt generator is a method of generating electricity in which field winding and armature winding are connected in parallel, and in which the armature supplies both the load current and the field current.A direct current (DC) generator, not using a permanent magnet, requires a DC field current. The field may be separately excited by a source of DC, or may be connected to the armature of the generator so that the generator also provides the energy required for the field current.
The terms 'shunt' and 'armature' apply to a particular type of d.c. motor, in which the field windings are connected in parallel with the armature windings. 'Shunt' is an archaic term for 'parallel', so the term 'shunt', in this context, means that the field winding is connected in parallel with the armature winding. The terms 'shunt current' and 'armature current', then describe the currents flowing in the shunt winding and armature winding, respectively.
The difference between a separately excited DC generator and a Shunt DC generator is that for a separately excited Dc generator , the excitation field winding is supplied by an external source different from that supplying the armature while for shunt generator, the excitation field windind is connected in series with the armature and supplied by a single source.
.The magnitude of the voltage and current of both the armature and shunt field coil. To decrease the speed when the load is increasing then increase the shunt field current while decreasing the armature voltage or current. To increase the speed while the load is increasing then increase the armature current while decreasing the shunt field current. The decreasing and increasing of these currents and voltages can be done by connecting a variable resistor in series or parallel with each of the armature and/or shunt field coil.
1. In Shunt generators armature current is equal to sum of field current and load current whereas in series generators field current and load current is same. 2. Shunt generators field winding has high resistance and large no of turns as compared to series generators. 3. Shunt generator field winding has thin conductor and series generator has thick.
It works with two reactor coils for excitation of the field reactor coil , which in turn provides current to the field. The two reactor coils are connected in shunt and series with the output of the generator stator or armature ( from where load is connected).
A shunt generator is a machine with a rotating set of coils of wire embedded in the iron core in its armature (the spinning part), and a 'commutator' and brushes that carry the current from the (spinning) windings on the armature to the stationary external electrical load. It also has a 'field' winding that creates a stationary magnetic field inside the machine, that the armature coils are spun in. As the windings spin, they cut the stationary field and generate an alternating voltage. As well as providing a moving connection to the coils, the commutator and brushes act like a switch, reversing the connections from the coils to the external circuit each time the waveform changes polarity from positive to negative and vice versa. This creates direct current in the external circuit and load. In a shunt generator, the field windings are connected in parallel with the armature ('shunt' is a common term for 'in parallel') and the field gets its power ('excitation') from the armature - the machine is 'self-excited'. A self-excited generator needs a small 'residual field' in the field's iron core so it can generate a small output from the armature when starting, which is fed to the field, boosting the armature output, which is fed to the field.... and so on, until the field iron core saturates with flux, and the field stops strengthening. Shunt generators are the 'workhorse of the small generator market - they are cheap and simple, have an output voltage that 'droops' a little with increasing load, and most shunt generators can safely be short-circuited - this takes the electrical energy away from the field, and the armature can usually develop only a small output current - not enough to damage it.
shunt Generators
A series motor is one in which the field windings are in series with the armature windings. So the torque is proportional to the square of the supply current.'Shunt' is an archaic term for 'parallel'. So a shunt motor is one in which the field winding is in parallel with the armature windings. So the torque is proportional to the supply current.
You have a seperately excited generator and then you have a shunt generator which has the field winding in parallel with the armature terminals. In DC machines a separately excited generator could be run as a shunt generator provided the field winding is designed to work on the generated voltage. A separately excited alternator needs a DC supply for the field winding. In car alternators that is taken from the main winding via a rectifier and a voltage regulator.
In long shunt the shunt field winding is in parallel to both generator and series field. In short shunt the shunt field is in parallel to generator only.