Both the prefix and the postfix increment operators increment the operand. The difference is what is the value of the expression during the evaluation of the expression. In the prefix form, the value is already incremented. In the postfix form, it is not. int a = 1; int b = ++a; // both a and b are now equal to 2 int a = 1; int b = a++; // a is equal to 2 and b is equal to 1
I assume by 2 plus you really mean ++. This is the increment operator which is used to increment the operand. If placed before the operand, the operator evaluates the incremented operand (prefix increment). If placed after the operand, the operator evaluates the non-incremented operand (postfix increment). +++ and ++++ are meaningless but are assumed to mean incrementing an increment. If you wish to increment an increment, you must use the compound expression ++(++) or (++)++. Thus for the variable x, prefix incrementing twice would be achieved with ++(++x), while postfix incrementing twice would be achieved with (x++)++. You can also mix the two, such as ++(x++) or (++x)++, both of which would increment x twice but would evaluate the increment of x. If postfix increment is not a requirement, it would be much easier to use the compound expression x+=n, where n is the amount you wish to increment. This is the same as saying x=x+n.
C++ uses the postfix increment operator whereas ++C uses the prefix increment operator. Both do exactly the same thing; they increment C (the same as C=C+1 increments C). The difference is only in the return value. ++C returns a reference to C, whereas C++ returns the original value of C.
C++ was originally called "C with Classes" in 1979, as that is precisely what C++ was at the time. The name was changed to C++ in 1983. ++ is the increment operator in C, thus C++ literally means C=C+1. Hence C++ is the next "incremental" version of C. By rights it should really be called ++C (prefix increment) because, although C++ (postfix increment) increments C, the evaluation is the original value of C.
A postfix incrementation or decrementation is handled by the ++ and -- operators. Postfix specifically refers to adding the operator after the variable name (eg. i++). This will attempt to increase/decrease the data type by 1. It differs from prefix in that it will return the variable before the calculation.Example:int i = 1;System.out.print(i++); //1System.out.print(i); //2
in C++ there is no real difference as operators are overloaded by implementing them as functions. However, while we differentiate between function overloads by the function signature (the number and type of parameters), operator overloads are distinguished only by the parameter types. The parameters are interpreted as operands, and the number of operands will depend upon whether the operator is unary, binary or ternary. That is, for any given operator, the number of operands will be the same for each overload you implement. The only exceptions are the unary increment (++) and decrement (--) operators as they each have postfix and prefix variants. In order to differentiate their signatures, an unreferenced or dummy parameter must be passed to the postfix variants.
Postfix expressions are expressions where the operator is at the end of the expression. These include the "++" (increment) and "--" (decrement) operators. Most Java expressions use in-fix notation (e.g. "a + b") but the increment and decrement operators can be postfix ("e.g. "a++" to increment variable a) or even prefix (e.g. "++a").
In terms of the C++ programming language itself, C++ literally means "the successor to C". In terms of the operator, operator++ is the increment operator. It has two forms: prefix (++c) and postfix (c++). Both do exactly the same thing and are effectively shorthand for the more verbose c = c + 1 or the more concise c += 1. The difference between the the prefix and postfix versions is in their evaluation. ++c will evaluate to c + 1 while c++ evaluates to c (the value of before the increment). However, the evaluations are only of importance when used in compound expressions: int a, b, c = 42; a = c++; // a==42, c==43 b = ++c; // b==44, c==44 Where the evaluation is of no importance, we can use either form. However, for user-defined types, the postfix operator usually incurs an overhead. This can be demonstrated by the following minimal example: struct foo { int i; foo& operator++ () { // prefix increment ++i; // increment this->i return *this; // return the incremented object } foo& operator++ (int) { // postfix increment foo f {*this}; // copy this object ++i; // increment this->i return f; // return the pre-incremented object } // ... }; Note that in both cases, the object itself is incremented, the only difference is in what value is returned to the caller (the newly incremented object or the original non-incremented object). However, because postfix increment requires that we copy the original value, we incur an overhead. The more complex the object, the greater that overhead will be. Built-in types do not suffer the copy overhead because the copy can be factored away by the compiler. Even so, it's a good idea to get into the habit of using prefix increment for built-in types unless you have good reason to use postfix increment. Similarly, it is usually a good idea to omit the postfix operator from user-defined classes unless we have good reason to provide it. Note that the postfix operator has an unused int argument in order to differentiate it from the prefix operator. The way to remember which is which is that the prefix operator has no argument, which is in common with all the other unary member operators. The postfix operator is the anomaly, thus it gets the dummy argument. The prefix and postfix decrement operators (operator--) work in a similar way, except they decrement the operand rather than increment it.
Both the prefix and the postfix increment operators increment the operand. The difference is what is the value of the expression during the evaluation of the expression. In the prefix form, the value is already incremented. In the postfix form, it is not. int a = 1; int b = ++a; // both a and b are now equal to 2 int a = 1; int b = a++; // a is equal to 2 and b is equal to 1
The increment operator in C++ is defined by operator++(). All arithmetic types (char, int, float, double, long, short, long long and long double) and all pointer types except void* are supported by operator++(). User-defined types can overload operator++() to provide support where required. operator++() has two versions, prefix increment and postfix increment. Prefix increment behaves as one would expect, incrementing the operand by 1 and returning the modified value. Postfix increment also increments the operand, however, the return value is the pre-incremented value. To understand the difference between prefix and postfix, consider the following: int i = 0; int j = ++i; // i=1, j=1 int i = 0; int j = i++; // i=1, j=0
I assume by 2 plus you really mean ++. This is the increment operator which is used to increment the operand. If placed before the operand, the operator evaluates the incremented operand (prefix increment). If placed after the operand, the operator evaluates the non-incremented operand (postfix increment). +++ and ++++ are meaningless but are assumed to mean incrementing an increment. If you wish to increment an increment, you must use the compound expression ++(++) or (++)++. Thus for the variable x, prefix incrementing twice would be achieved with ++(++x), while postfix incrementing twice would be achieved with (x++)++. You can also mix the two, such as ++(x++) or (++x)++, both of which would increment x twice but would evaluate the increment of x. If postfix increment is not a requirement, it would be much easier to use the compound expression x+=n, where n is the amount you wish to increment. This is the same as saying x=x+n.
The ++ in C++ refers to the postfix increment operator (operator++()). It's literal meaning is "the successor to C", in reference to the C language upon which the C++ language is based.
Efficiency is the same; the difference is when the "++" is evaluated, before or after other operations. For example: a = b++ // This will first copy b to a, then increment b. a = ++b // This will first increment b, then copy it to a. If you have the "++" operator by itself, it makes no different if you use prefix or postfix. a++ is the same as ++a.
C++ uses the postfix increment operator whereas ++C uses the prefix increment operator. Both do exactly the same thing; they increment C (the same as C=C+1 increments C). The difference is only in the return value. ++C returns a reference to C, whereas C++ returns the original value of C.
A counter variable is "incremented" (the step number, 1 in this case, is added to it) in any of the following four ways: $counter = $counter + 1;$counter += 1; //this is shorthand for the above $counter++; //postfix increment operator $counter = 0;echo $counter++;The output would be 0++$counter; //prefix increment operator $counter = 0; echo ++$counter;The output is 1
You cannot follow a prefix increment with a postfix increment. int x = 40; int y = ++x++; // error This has to be an error because the postfix operator has higher precedence than the prefix operator. Thus the above code is equivalent to: int x = 40; int y = ++(x++); // error The expression (x++) is evaluated first. This increments x to 41 but the expression evaluates to 40 (the original value of x). Thus the prefix operator is essentially trying to evaluate the expression ++40 rather than ++x. This cannot work because the value 40 is not a modifiable lvalue. It has to be modifiable because we want to increment the value and return a reference to the modified value. But there's nothing to refer to here. The value is temporary and will fall from scope immediately after we use it. That is, the prefix operator may well be able to increment the temporary value to 41, but that value immediately falls from scope. With nothing to refer to, the prefix expression cannot be evaluated. The only way we can use both operators together is if we reverse the precedence using parenthesis: int x = 40; int y = (++x)++; Now the prefix operator is evaluated first, returning a reference to x which (now) holds the value 41. The postfix operator then increments x to 42 but returns the original value of 41 which is then assigned to y. Thus when all statements have been executed, y holds the value 41 while x holds the value 42.
C++ was originally called "C with Classes" in 1979, as that is precisely what C++ was at the time. The name was changed to C++ in 1983. ++ is the increment operator in C, thus C++ literally means C=C+1. Hence C++ is the next "incremental" version of C. By rights it should really be called ++C (prefix increment) because, although C++ (postfix increment) increments C, the evaluation is the original value of C.