No, these are two unrelated properties of a material.
One field in which this is helpful is in the manufacture of insulating materials. Dielectric strength determines the strongest electric field an insulator can withstand before it fails. For example, if the insulation around a wire melts or breaks, the insulator's dielectric strength is compromised.
According to a few charts I was able to find, the most realistic material with the highest dielectric strength happens to be Mica, with dielectric strength of 118.
The dielectric,usually the insulator between the plates of a capacitor, can be overstressed by the application of too high voltages applied to the capacitor plates. The dielectric breaks down and a current flows between the plates until,either they are discharged, or an equilibrium is reached,below the working voltage of the capacitor. If the dielectric is damaged in this process he capacitor must be replaced. Some dielectric material self heal and can recover from an over voltage.
Capacitors are named after their dielectrics. So, an 'air capacitor' uses air as its dielectric, a 'mica capacitor' uses mica as its dielectric, and so on. There are lots of different dielectric used to separate the plates of a capacitor, each with different permittivities and dielectric strengths. As the perfect dielectric (i.e. one with both a very high permittivity and a very high dielectric strength) doesn't occur, the choice of dielectric is always a compromise between it permittivity and dielectric strength.
For an insulating material, the dielectric strength should be high to withstand high voltages without breaking down. Conversely, the dielectric loss should be low to minimize energy loss due to internal friction within the material when subjected to an electric field.
high and high
Dielectric strength is a measure of the ability of an insulating material to withstand electric field stress without breaking down or becoming conductive. It is typically measured in volts per unit thickness of the material. A higher dielectric strength indicates a better insulating material.
Dielectric strength is the maximum electric field that a material can withstand without experiencing electrical breakdown. It is a measure of the insulation capability of the material. A higher dielectric strength indicates better insulation properties.
When a dielectric material is heated, its dielectric strength typically decreases. This is because heat can modify the material's properties, structure, and ability to resist electric fields. As a result, the material may become more conductive and less effective at insulating against electrical charges.
In SI, the unit of dielectric strength is volts per meter (V/m). In U.S. customary units, dielectric strength is often specified in volts per mil.In physics, dielectric strength 2 meanings:Of an insulating material, the maximum electric field that a pure material can withstand under ideal conditions without breaking down.For a specific configuration of dielectric material and electrodes, the minimum applied electric field that results in breakdown.
Mica is an insulator. It has high dielectric strength and low electrical conductivity, making it a good insulating material for electronics and electrical applications.
ASTM D149 - 09 Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies
A 'dielectric' describes a material that supports an electric field and is generally used to describe an insulating material. Two properties exhibited by a dielectric are its permittivity and its dielectric strength. High values of permittivity (abillity to improve capacitance) are desirable for dielectrics used in capacitors, and high values of dielectric strength (ability to withstand voltages) are desirable for insulators but, unfortunately, the two quantities aren't relatated. So, selecting a dielectric is a matter of compromise.
No, these are two unrelated properties of a material.
The dielectric breakdown strength is the maximum electric field that a dielectric material can withstand before it breaks down and allows electrical current to flow through it. It is a measure of the insulation properties of the material.
One field in which this is helpful is in the manufacture of insulating materials. Dielectric strength determines the strongest electric field an insulator can withstand before it fails. For example, if the insulation around a wire melts or breaks, the insulator's dielectric strength is compromised.