int iFibOne = 0, iFibTwo = 1;
System.out.println("Fibonacci series printing ...... ");
System.out.print(iFibOne + "," + iFibTwo + ",");
do{
int cur = iFibOne + iFibTwo;
iFibOne = iFibTwo;
iFibTwo = cur;
System.out.print(cur + ",");
}while(iFibTwo < 100);
This prints up to 144 feel free to change 100 in while condition to get more.
Just generate the Fibonacci numbers one by one, and print each number's last digit ie number%10.
Here is a good answer for recursion Fibonacci series. #include <stdio.h> #include <conio.h> long Fibonacci(long n); int main() { long r, n,i; printf("Enter the value of n: "); scanf("%ld",&n); for(i=0;i<=n;i++) { printf(" Fibonacci(%ld)= %ld\n", i,Fibonacci(i)); } getch(); return 0; } long Fibonacci(long n) { if(n==0 n==1) return n; else { return (Fibonacci(n-1)+Fibonacci(n-2)); } } for n=5; Output: Fibonacci(0)=0 Fibonacci(1)=1 Fibonacci(2)=1 Fibonacci(3)=2 Fibonacci(4)=3 Fibonacci(5)=5
The Importance of Fibonacci's series is that it helps people find more patterns 1+0=1 1+1=2 1+2=3 2+3=5 5+3=8 etc.
<script type = "text/javascript"> var input; var rev = 0; input=window.prompt ("Please enter a 5-digit number to be reversed."); input = input * 1; while (input > 0) { rev *= 10; rev += input % 10; input /= 10; } document.write ("Reversed number: " + rev); </script>
//WAP to print fibonacci series using do-while loop.? using System; class Fibonacci { public static void Main() { int a=1,b=1; int sum=0; Console.Write("Enter Limit:"); int n=Int32.Parse(Console.ReadLine()); Console.Write(a); Console.Write(b); do { sum=a+b; a=b; b=sum; Console.Write(sum); } while(sum<n); } } By-Vivek Kumar Keshari
Exactly what do you mean by 'C program in Java'
20 is not a term in the Fibonacci series.
Fibonacci!
As you expand the Fibonacci series, each new value in proportion to the previous approaches the Golden Ratio.
Series
132134...
It is 354224848179261915075.
The Fibonacci series.
Just generate the Fibonacci numbers one by one, and print each number's last digit ie number%10.
A Fibonacci number series is like the example below, 1,1,2,3,5,8,13,21,34,55,89,144,233,377,610...... and so on in general Fibonacci numbers are just the previous two numbers added together starting with 1 and 0 then goes on forever.
The sum of the previous two numbers in the series.
randomly