Want this question answered?
For make a system balanced losses in power
I am assuming that you really want to use ammeters to measure power in a balanced 3 phase system. (hope you are not meaning 3 watt meter method) Power in Watt in a three phase system is equal to 1.73 x line voltage x line current x power factor. You need to know line voltage, power factor also in addition to current to compute the power. If the system is balanced then actually you do not need to connect ammeters in all three lines. One ammeter reading will do.
A three-phase 'unbalanced' system refers to the load, as the supply voltages are unaffected by load. So the phase-angle and, therefore, the power factor of each phase will be different -i.e. there will be three different power factors.
154
Inductors are considered to be a load for reactive power, meaning that they will draw reactive power from the system. Capacitors are considered to be sourced of reactive power, they feed reactive power into the system. If you have a circuit that is at unity (balanced with inductors and capacitors) no reactive power will be drawn from the source. You will have unity power factor. If your circuit is more inductive than capacitive it will be drawing reactive power from the source. The opposite is also true for capacitors.
For make a system balanced losses in power
the system is balanced, meaning that the three phases have equal voltage magnitudes and are 120 degrees apart in phase angle.
Of the 'balanced' what?
three phase load is said to be balanced when the impedance and power factor of each load is equal.in this condition phasor sum of currents and phase voltages add up to zero.
I am assuming that you really want to use ammeters to measure power in a balanced 3 phase system. (hope you are not meaning 3 watt meter method) Power in Watt in a three phase system is equal to 1.73 x line voltage x line current x power factor. You need to know line voltage, power factor also in addition to current to compute the power. If the system is balanced then actually you do not need to connect ammeters in all three lines. One ammeter reading will do.
In a three-phase power transmission system, the neutral conductor does not carry current during normal operation when the system is balanced. The neutral conductor is only used to provide a return path for unbalanced currents in the system and does not carry current when the system is operating under balanced conditions.
A three-phase 'unbalanced' system refers to the load, as the supply voltages are unaffected by load. So the phase-angle and, therefore, the power factor of each phase will be different -i.e. there will be three different power factors.
In a three-phase unbalanced system, the voltage magnitudes and phase angles between the phases are unequal, resulting in varying amounts of power being delivered to each phase. This can lead to unequal loading on the system components and reduced efficiency. In contrast, a balanced system has equal voltage magnitudes and phase angles, ensuring equal power distribution among the phases and optimal system performance.
This system keeps the power between the three branches of government in the U.S. balanced. It doesn't allow one branch to have more power than the other. Without this system, one of the branches of our government would be in control, which is not how our democracy works.
154
a system that prevents any one country from dominating the others according to my American Journey Book
(a) Access to the star point is not required. (b) The power dissipated in both balanced and unbalanced loads is obtained, without any modifi cation to the connections. (c) For balanced loads, the power factor may be determined.