All elements of any given array must satisfy the same data type requirement, meaning they should be of the same data type for the array to be well-defined and properly utilized.
An irregular dimensional array is a special type of multi-dimensional array.First we must understand that a multi-dimensional array is just an array of arrays. Each element in the array is, itself, an array of elements.A regular multi-dimensional array will be an array of size n, with each element containing a separate array of size m. That is, each sub-array has the same size.An irregular multi-dimensional array will be a multi-dimensional array in which each sub-array does not contain the same number of elements.Regular array:array[0] = new array{0, 1, 2}array[1] = new array{3, 4, 5}array[2] = new array{6, 7, 8}array[3] = new array{9, 10, 11}This regular array is an array of size 4 in which each sub-array is of size 3.Irregular array:array[0] = new array{0, 1, 2}array[1] = new array{3, 4}array[2] = new array{5, 6, 7}array[3] = new array{8, 9, 10, 11}This irregular array is an array of size 4 in which the size of each sub-array is not the same.
sparse array is one which has contents lower than its maximum size, that is the array has free or empty locations....
It's not exactly true. Array with fixes size are efficient, but do not work well when you have to resize your array. This actually is the answer for your question. Fixed size arrays are not efficient if you have to change the size. Also you cannot destroy them and release memory used to save the array (for that you have to use operator new).
The obvious answer is that one has a constant size while the other does not. More specifically, a fixed-size array is one where the size is known at compile time and does not change at runtime. By contrast, the size of a variable-sized array may or may not be known at compile time but may change at runtime. We often refer to a variable-size array as being a dynamic array, however some people (myself included) incorrectly refer to a fixed-size array as being a static array. The misunderstanding largely comes from the fact that we often refer to the heap (or free store) as being dynamic memory because all dynamic variables are allocated there (including variable-size arrays). But the term dynamic array does not refer to the memory, it refers to the dynamic -- as in changeable -- nature of the array itself. By contrast, a fixed-size array is only deemed static if it is statically allocated, in which case it will be allocated in the program's data segment along with all other static variables, global variables and constants. But a local fixed-size array is allocated on the program's stack and is therefore, by definition, non-static. Moreover, you can allocate a fixed-size array on the heap!
! variable to declase the size of an array in True Basic ! set up a dummy value for array - any initial value > 0 is fine. DIM array$(999) ! ask the user for the length of the array INPUT PROMPT "Enter array size " :size ! resize the array with user defined length MAT REDIM array$(size) ! program end END
#include "stdio.h" #define SIZE 100; void main() { int array[SIZE], i, size; printf("\nEnter the Size off Array :- "); scanf("%d", &size); printf("\nEnter the Elements of Array :- ")' for(i = 0; i < size; i++) scanf("%d", &array[i]; printf("\nThe Elements of entered Array :- "); for(i = 0; i < size; i++) printf("%7d", array[i]); }
All elements of any given array must satisfy the same data type requirement, meaning they should be of the same data type for the array to be well-defined and properly utilized.
void bubblesort (int* array, int size) { if (!array size<2) return; int last_swap = size; while (last_swap>0) { int n=last_swap; for (int i=1; i<last_swap; ++i) { if (array[i]<array[i-1]) { array[i]^=array[i-1]^=array[i]^=array[i-1]; n=i; } last_swap = n; } }
It depends on the size of the array. The ones that you buy for your car are often limited to a single watt or less.
An irregular dimensional array is a special type of multi-dimensional array.First we must understand that a multi-dimensional array is just an array of arrays. Each element in the array is, itself, an array of elements.A regular multi-dimensional array will be an array of size n, with each element containing a separate array of size m. That is, each sub-array has the same size.An irregular multi-dimensional array will be a multi-dimensional array in which each sub-array does not contain the same number of elements.Regular array:array[0] = new array{0, 1, 2}array[1] = new array{3, 4, 5}array[2] = new array{6, 7, 8}array[3] = new array{9, 10, 11}This regular array is an array of size 4 in which each sub-array is of size 3.Irregular array:array[0] = new array{0, 1, 2}array[1] = new array{3, 4}array[2] = new array{5, 6, 7}array[3] = new array{8, 9, 10, 11}This irregular array is an array of size 4 in which the size of each sub-array is not the same.
If all elements of the array are in use then the last record is referred to as MAX-1. If you are using a count variable to remember how far into the array you are using then this variable will keep track of the last allocated value in the array.
It depends on the size of the array. If you defined the array as 10 x 20 x 30 x 40... int a[10][20][30][40]; ...then the maximum element (coefficient?) number would be 9,19,29,39... int b = a[9][19][29][39];
sparse array is one which has contents lower than its maximum size, that is the array has free or empty locations....
It's not exactly true. Array with fixes size are efficient, but do not work well when you have to resize your array. This actually is the answer for your question. Fixed size arrays are not efficient if you have to change the size. Also you cannot destroy them and release memory used to save the array (for that you have to use operator new).
2D array of size 2x8 and 1D array of size 16
The obvious answer is that one has a constant size while the other does not. More specifically, a fixed-size array is one where the size is known at compile time and does not change at runtime. By contrast, the size of a variable-sized array may or may not be known at compile time but may change at runtime. We often refer to a variable-size array as being a dynamic array, however some people (myself included) incorrectly refer to a fixed-size array as being a static array. The misunderstanding largely comes from the fact that we often refer to the heap (or free store) as being dynamic memory because all dynamic variables are allocated there (including variable-size arrays). But the term dynamic array does not refer to the memory, it refers to the dynamic -- as in changeable -- nature of the array itself. By contrast, a fixed-size array is only deemed static if it is statically allocated, in which case it will be allocated in the program's data segment along with all other static variables, global variables and constants. But a local fixed-size array is allocated on the program's stack and is therefore, by definition, non-static. Moreover, you can allocate a fixed-size array on the heap!