Because it has the lowest cut-off frequency (highest cut off wavelength) for a>b o
A square waveguide does not allow single mode operation as for example fc(TEmn)=fc(TEnm).
circular is easy to manufacture than rectangular As the name indicates the circular is circular in shape and rectangular is rectangular in shape its uses same modes that is Te and Tm I know this much only hope this helped u little bit atleast A: In principle waveguides act as the equivalent of wires for high frequency circuits. For such applications, it is desired to operate waveguides with only one mode propagating inside of the waveguide. With rectangular waveguides, it is possible to design the waveguide such that the frequency band over which only one mode propagates is as high as 2:1 (i.e. the ratio of the upper band edge to lower band edge is 2). With circular waveguides, the highest possible band width allowing only a single mode to propagate is only 1.3601:1. I found it on Wikileaks.
TE10
Arif Ullah khan utman kheel this is because for conductor E parallel is zero this means that the surface of the wave guide is at equipotential and this potential follow the laplace equation .it means that there is no maxima and minima inside the wave guide . this means that the electric field inside zero . hence the TEM do not exist in wave guide only TE and TM can be exist . if we place some conductor in the wave guide then the conductor inside will not be equipotential and the TEM waves can be exist . like in Coaxial cables
Rectangular Waveguide - TE10; (TM11 in case of TM waves) Circular Waveguide - TE11;
No it does not. The least mode for TM modes is the TM11 mode.
Because it has the lowest cut-off frequency (highest cut off wavelength) for a>b o
A square waveguide does not allow single mode operation as for example fc(TEmn)=fc(TEnm).
TE10 mode is the dominant mode with a>b, since it has the lowest attenuation of all modes. Either m or n can be zero, but not both.
circular is easy to manufacture than rectangular As the name indicates the circular is circular in shape and rectangular is rectangular in shape its uses same modes that is Te and Tm I know this much only hope this helped u little bit atleast A: In principle waveguides act as the equivalent of wires for high frequency circuits. For such applications, it is desired to operate waveguides with only one mode propagating inside of the waveguide. With rectangular waveguides, it is possible to design the waveguide such that the frequency band over which only one mode propagates is as high as 2:1 (i.e. the ratio of the upper band edge to lower band edge is 2). With circular waveguides, the highest possible band width allowing only a single mode to propagate is only 1.3601:1. I found it on Wikileaks.
TE10
It is a waveguide that is circular. Circular waveguides have modes that are described in terms of Bessel functions instead of the sines/cosines used for rectangular waveguides. The disadvantage is that the two lowest modes have cutoff frequencies spaced by less than an octave. Circular waveguides are used for rotating joints, for example in radar. The H01 mode in circular waveguide was used as a low-loss mode for transmitting signals over distance, but this technique has been replaced by fibre-optic cables.
waveguide is a metal pipe that contains and guides microwaves from place to place in a microwave system (e.g. oscillators, amplifiers, mixers, modulators, filters, antennas)horn antenna has a waveguide connected at its focus, in transmit mode the waveguide feeds the horn which then emits a microwave beam, in receive mode the horn collects a microwave beam and concentrates it int the waveguide
The fundamental mode in circular waveguides is the TE11 mode, which is characterized by having one half-wave variation along the radius and one full-wave variation along the circumference of the waveguide. It is the lowest order mode that can propagate in a circular waveguide.
TM01 mode doesn't exist because If anyone of the two (m or n) becomes 0 then the z component of electric field that is Ezs becomes zero which in turn makes all the other components (Exs, Eys, Hxs, Hys) vanish. you don't have any component of field for this configuration.
Arif Ullah khan utman kheel this is because for conductor E parallel is zero this means that the surface of the wave guide is at equipotential and this potential follow the laplace equation .it means that there is no maxima and minima inside the wave guide . this means that the electric field inside zero . hence the TEM do not exist in wave guide only TE and TM can be exist . if we place some conductor in the wave guide then the conductor inside will not be equipotential and the TEM waves can be exist . like in Coaxial cables