The power factor of an RLC circuit under resonance is 1.
Explaination:-
Power factor of an RLC circiut is given by=R/|Z|
For a resonant circiut,|Z|=R (Because reactive components are zero in resonance)
.
. .Power factor=R/R=1.
No, as 100% efficiency is not possible.AnswerYes, it occurs at resonance. That is, when a circuit's inductive reactance is exactly equal to its capacitive reactance. This can be achieved by adjusting the frequency of the supply until resonance is achieved. Incidentally, power factor has nothing to do with 'efficiency'.
Power factor in any circuit is the ratio of the load's true power to its apparent power. It's also the cosine of the phase angle. In L-R circuits, it's described as a 'lagging power factor', because the load current lags the supply voltage.
ratio between true power and apparent power is called the power factor for a circuit Power factor =true power/apparent power also we conclude PF=power dissipated / actual power in pure resistive circuit if total resistance is made zero power factor will be zero
Power factor does not apply to a resistive circuit. Just the current will follow the voltage (in phase)
For open circuit test of transformer, the secondary is open circuit and the circuit impedance is largely inductive due to the core impedance having high L as compared to R. hence the power factor is reduced, thus , we use low power factor wattmeters.
You are presumably referring to an 'R-L-C' circuit. At resonance, the load current is in phase with the supply voltage and, so, the power factor is unity.
In an L-C-R AC series circuit, resonance occurs when the capacitive and inductive reactances cancel each other out, resulting in minimum impedance. This causes the current in the circuit to be at its maximum and the power factor to be unity. By measuring the frequency at which resonance occurs, one can determine the values of the inductor, capacitor, and resistor in the circuit.
At resonance,Xl=Xc subsituting the values we get resonant frequency and impedance Z=R it is high and power is max I2 R
When the Inductor's value equals Zero, then the Power Factor reaches 1. Conversly, when the Resistance equals 0, the Power Factor becomes Zero. The Power Factor for a Series R-L Circuit is equal to R / sqrt (R^2 + (w*L)^2 )
When the circuit is purely resistive or in resonance, i.e. capacitive and inductive reactance cancels out.Power factor is the ratio of apparent power over true power, and is the cosine of the phase angle between voltage and current.
XL=Xc is the resonance condition for an RLC circuit
The power factor never depends on the resistance of a circuit. It depends on the equivalent inductance and capacitance in the circuit, and on the frequency of the power supply, even if the resistance is zero.
No, as 100% efficiency is not possible.AnswerYes, it occurs at resonance. That is, when a circuit's inductive reactance is exactly equal to its capacitive reactance. This can be achieved by adjusting the frequency of the supply until resonance is achieved. Incidentally, power factor has nothing to do with 'efficiency'.
Power factor in any circuit is the ratio of the load's true power to its apparent power. It's also the cosine of the phase angle. In L-R circuits, it's described as a 'lagging power factor', because the load current lags the supply voltage.
these two types of circuit loads are the purely capacitive loads and purely inductive loadsAnother AnswerApparent power will be larger than true, or active, power in ANY circuit, other than a purely-resistive circuit or an R-L-C circuit at resonance.
A resistor doesn't have a power factor. However, if a circuit is pure resistance in nature the power factor will be one when a voltage is applied and a current flows in the circuit. The power factor is a measure of the relative phases of the current and voltage in a circuit.
power factor means kw/kva