we dont get an appreciable current in dis case...dats why we dope n get curret for practical use...
A semiconductor has an energy band (a range of energy levels) that is forbidden -- ideally void of charged particles at all temperatures. Practically, at low temperatures (T < 40 K for silicon), the probability of finding a free charge carrier outside the forbidden gap is nearly nil. When the temperature is increased, the probability of finding a free charge carrier outside the forbidden gap increases, but the net charge is still zero (negative charge exactly cancels positive charge). However, an intrinsic semiconductor (pure or undoped) is just a resistor of little importance (other materials are cheaper and better-controlled than a semiconductor). When we introduce foreign atoms into a semiconductor (the process is called doping), we change its electrical properties -- it has a lot more free charge carriers than an intrinsic semiconductor, although again, the net charge is zero. The total charge of free carriers is balanced by immobile ions of equal and opposite total charge. For example, boron and indium will be used to dope silicon p-type; phosphorus and arsenic will be doping silicon n-type. I am quoting boron, phosphorus, and silicon as examples from hereon. p-type doping is a process where a silicon atom in the lattice is replaced by a boron atom. A Boron atom has 3 electrons in the outer shell, compared with an electron occupancy of 4 for a silicon atom. So a Boron atom provides a vacancy for any free electrons to occupy with a little effort, when an electron chances to be nearby (the four boron-silicon covalent bonds needs 8 electrons to be stable, but only 7 are provided). The net charge of the material is still zero. More about from where the free electron is coming. n-type doping is using a phosphorus atom to replace a silicon atom. A phosphorus atom has 5 electrons in the outer shell. So a phosphorus atom provides an electron that can be freed with a little effort (the four phosphorus-silicon covalent bonds only need 8 electrons to be stable, each atom needing only to contribute four electrons; the 9th electron will be loosely bound). The net charge of the material is still zero. Where can the electron go? Magic happens when a p-type silicon is brought in contact with an n-type silicon to form a pn junction. The excess electron vacancies (holes) in p-Si now can exchange with the excess electrons in n-Si, but the net charge of the p-n silicon entity is still zero. However, microscopically, a depletion region is formed at the pn junction, where excess carriers can cross over to the other side. In the p-Si, excess electrons from the n-Si start filling up the holes (the lack of the 8th outer-shell electron to form the four stable boron-silicon covalent bonds) and negatively-charged boron atoms are formed. In the n-Si, excess holes from the p-Si start swallowing up the loosely-bound electrons (the 9th electron in the outer shell) of phosphorus atoms and positively-charged phosphorus atoms are formed. Once formed, and in the absence of an electric field, the depletion region now presents an energy barrier to any further carrier movement and a steady state results -- no net current in the pn junction.
Breakdown depends on the electric field value in FETS (as in diodes and such, where you can find a junction). Theoretically, you need to - dope less the junction region of your device (like p-i-n diodes, the i (intrinsic) region is not doped in order to reduce E field peak, which occurs near the center of the device). - raise the length of your device Both of these two solutions will have the drawback of increasing your ON resistance. At circuit design level, you can protect your devices with clamp diodes or something similar.
most water heaters rust out from the bottom or at he top where the pipes lead into them. the amount of time and effort to try and fabricate a fix would not serve the owner unless he had no choice. replacing the unit is the standard way to fix these.sometimes the gas regulator can go bad and these can be replaced.
To increase the number of free electrons in a semiconductor, you can dope it with donor atoms like phosphorus. This introduces extra free electrons into the material. To increase the number of holes, you can dope the semiconductor with acceptor atoms like boron, creating extra holes for electrons to move into.
p-type or n-type semiconductor alone is of very limited use in chips -- you can only make a thin-film resistor or parallel-plate capacitor with it. You also need the opposite type, the n-type semiconductor, to make junction diodes and MOS or bipolar transistors, which are essential components in an integrated circuit. ================================
You could replace As in GaAs with elements like Zn, Be, or Mg to create p-type semiconductor materials. These elements will introduce acceptor impurities in the GaAs crystal structure, resulting in a deficiency of electrons and the formation of positively charged holes, leading to p-type doping.
A semiconductor of silicon doped with a pentavalent impurity expected to be an n-type semiconductor.When you dope a silicon semiconductor with pentavalent impurity the extra electron from the pentavalent compound remains free while others 4 form the covalent bonding with neighboring atoms leaving one unpaired electron.The extra electron remains in the higher energy state nearer to the conduction band, and, depending on the material, a small amount of energy can bring the electron to the conduction band and hence electron acts as the carrier. Thus an n-type of semiconductor is formed.
we dont get an appreciable current in dis case...dats why we dope n get curret for practical use...
A semiconductor material forms a crystal structure where all the valence electrons "participate" in forming the lattice. There are neither "extra" nor "missing" electrons in the structure. If we dope the semiconductor with a "P-type" material, this sets the stage for the creation of a "hole" in that matrix. The P-type material will have one less valence electron than our semiconductor material. And when that P-type atom becomes part of the crystal matrix, it lacks that one electron to make the matrix "complete" or "uniform" as regards the electrons. That creates the hole in the matrix. When that P-type material is formed up against N-type material (which has an "extra" electron in its matrix), that extra electron will leave the N-type material and migrate to the P-type material to fill that hole. This sets up a condition where charges have shifted, and it creates a difference of potential (voltage) across the junction (owing to the shift of the electrons).
Semiconductors are insulators at low temperatures and reasonably good conductors at higher temperatures.semiconductors whose ability to conduct electric lies between those of conductor and insulatorAdditional:Common semiconductors include silicon and germanium, which are tetra-valent, that is each atom has four electrons in its outer orbit. In the normal crystalline form, the atoms form covalent bonds where adjacent atoms share an electron. Electrons thus bound are not free to move and are not affected by an electric field. These bonds are fairly weak, and are easily broken. At any temperature above absolute zero, many of the bonds are broken leaving electrons free to move. So, as temperature increases, the semiconductor material becomes a better and better conductor. This is an intrinsic, or pure semiconductor. So, the above statement " Semiconductors are insulators at low temperatures and reasonably good conductors at higher temperatures." is absolutely true.As used in electronics, impurities are intentionally introduced (doped) into the semiconductor. When penta-valent (5 outer electrons) elements such as Arsenic and Antimony are used, the semiconductor has many free electrons, and is said to be n-type. If tri-valent (3-outer electrons) elements such as Boron, Gallium and Indium are used, the material is electron starved, and is said to be p-type. If we dope one side of a semiconductor block such that it is n-type, and the other side p-type, a so-called semiconductor junction is formed. This is the building block for all modern electronics such as the diode, transistor and integrated circuit (IC).
1 dime bag,
it means they "ride dope" or, AKA, USE dope
dope dope dope dope
As a drug, the word is the same ' dope' To smoke dope would be 'fumer de la dope'
Normally, no electron energy states exist in the band gap, the gap between the valence band and conduction band in a semiconductor. However, if we dope the semiconductor, i.e. add donor (n type) or acceptor (p type) atoms to it, we introduce new electron energy states in the band gap! Take for example silicon, in which we introduce phosphorus, which is a group V element and thus a donor atom. This will introduce extra filled electron states just below the conduction band. Now, this all happens at 0K, so no current can flow (this is logical as electrons don't move at this temperature, even with an electric field applied). But if we raise the temperature e.g. until room temperature at 300K, the electrons gain energy and can jump into the free energy states in the conduction band. These electrons in the conduction band can now conduct electricity.