Laplace Transforms are used primarily in continuous signal studies, more so in realizing the analog circuit equivalent and is widely used in the study of transient behaviors of systems. The Z transform is the digital equivalent of a Laplace transform and is used for steady state analysis and is used to realize the digital circuits for digital systems. The Fourier transform is a particular case of z-transform, i.e z-transform evaluated on a unit circle and is also used in digital signals and is more so used to in spectrum analysis and calculating the energy density as Fourier transforms always result in even signals and are used for calculating the energy of the signal.
Chat with our AI personalities
The Fourier transform is used to analyze signals in the frequency domain, transforming a signal from the time domain to the frequency domain. The z-transform is used in the analysis of discrete-time systems and signals, transforming sequences in the z-domain. While the Fourier transform is typically applied to continuous signals, the z-transform is used with discrete signals represented as sequences.