The molecular formula for sodium iodide is NaI. The molecular formula for silver nitrate is AgNO3.
The reaction between silver nitrate and sodium iodide will result in the formation of silver iodide precipitate and sodium nitrate solution. This is a double displacement reaction where the silver ions from silver nitrate will combine with iodide ions from sodium iodide to form the insoluble silver iodide.
When silver nitrate reacts with ammonium chloride, a white precipitate of silver chloride forms along with ammonium nitrate. This reaction is a double displacement reaction where the silver ion in the silver nitrate switches places with the ammonium ion in the ammonium chloride, resulting in the formation of the two new compounds.
The symbol equation for silver nitrate solution and potassium iodide is: AgNO3(aq) + KI(aq) -> AgI(s) + KNO3(aq).
When sodium iodide reacts with silver nitrate, a double displacement reaction occurs. The sodium ions exchange with the silver ions, forming silver iodide as a white precipitate and sodium nitrate. This reaction can be represented by the equation: 2NaI + 2AgNO3 → 2AgI + 2NaNO3
The molecular formula for sodium iodide is NaI. The molecular formula for silver nitrate is AgNO3.
When silver nitrate and strontium iodide react, a double displacement reaction occurs. Silver iodide and strontium nitrate are formed as products. Silver iodide is a yellow precipitate while strontium nitrate remains in solution.
The reaction between silver nitrate and sodium iodide will result in the formation of silver iodide precipitate and sodium nitrate solution. This is a double displacement reaction where the silver ions from silver nitrate will combine with iodide ions from sodium iodide to form the insoluble silver iodide.
The molecular equation for the reaction between silver nitrate (AgNO3) and potassium iodide (KI) is: AgNO3 + KI → AgI + KNO3. This reaction forms silver iodide (AgI) and potassium nitrate (KNO3).
When silver nitrate reacts with ammonium chloride, a white precipitate of silver chloride forms along with ammonium nitrate. This reaction is a double displacement reaction where the silver ion in the silver nitrate switches places with the ammonium ion in the ammonium chloride, resulting in the formation of the two new compounds.
The reaction between silver nitrate and potassium iodide forms silver iodide precipitate and potassium nitrate. This reaction is a double displacement reaction where the silver ions from silver nitrate switch places with the potassium ions in potassium iodide.
The symbol equation for silver nitrate solution and potassium iodide is: AgNO3(aq) + KI(aq) -> AgI(s) + KNO3(aq).
When silver nitrate reacts with potassium iodide, a precipitation reaction occurs where silver iodide is formed. The balanced chemical equation for this reaction is: AgNO3 + KI -> AgI + KNO3. The silver iodide formed will appear as a yellow solid precipitate.
Hydrogen iodide can be tested using silver nitrate solution. When hydrogen iodide is bubbled through silver nitrate solution, a yellow precipitate of silver iodide is formed. This confirms the presence of iodide ions in the sample.
When sodium iodide reacts with silver nitrate, a double displacement reaction occurs. The sodium ions exchange with the silver ions, forming silver iodide as a white precipitate and sodium nitrate. This reaction can be represented by the equation: 2NaI + 2AgNO3 → 2AgI + 2NaNO3
A white precipitate of silver iodide forms due to the reaction between silver ions and iodide ions, leaving potassium nitrate in solution. This reaction is a double displacement reaction and is used as a test for iodide ions.
Silver nitrate solution and potassium iodide solution can be mixed to form silver iodide due to a double displacement reaction where the silver ions from silver nitrate react with the iodide ions from potassium iodide to form insoluble silver iodide precipitate. The balanced chemical equation for this reaction is: AgNO3 (aq) + KI (aq) → AgI (s) + KNO3 (aq).