The first step is to change the words into the chemical formulas. Pb(NO3)2 + KI Then since there are two ionic compounds, it is going to be a double replacement reaction. This means that the two anions (negatively charged ions) will be switched in the products. So the next step is to form the chemical equation. Pb(NO3)2 + KI --> PbI2 + KNO3 The next step is to balance the equation. 1 Pb(NO3)2 + 2 KI --> PbI2 + 2KNO3 Then the next step would be to use stoichometry and convert the given grams of Lead (II) Nitrate to Potassium Iodide and the given grams of Potassium Iodide to Lead (II) Nitride. After that, you would find which one takes up more than the given amount of grams and that would be the limiting reactant.
A white precipitate of silver iodide forms due to the reaction between silver ions and iodide ions, leaving potassium nitrate in solution. This reaction is a double displacement reaction and is used as a test for iodide ions.
A yellow precipitate of lead iodide is formed due to the reaction between potassium iodide and lead nitrate. This reaction is a double displacement reaction, where the potassium from potassium iodide swaps places with the lead from lead nitrate, forming the insoluble lead iodide.
When potassium iodide is added to lead nitrate, a precipitation reaction occurs resulting in the formation of lead iodide, a yellow insoluble solid, and potassium nitrate, which remains in solution. This reaction can be visually identified by the formation of a yellow precipitate.
A yellow precipitate of silver iodide is formed due to the reaction between potassium iodide and silver nitrate, as silver iodide is insoluble. The reaction can be described by the equation: 2KI (aq) + AgNO3 (aq) → AgI (s) + 2KNO3 (aq)
When chlorine gas is added to potassium iodide solution, potassium chloride and iodine are formed. The balanced chemical equation for this reaction is 2KI + Cl2 → 2KCl + I2.
A white precipitate of silver iodide forms due to the reaction between silver ions and iodide ions, leaving potassium nitrate in solution. This reaction is a double displacement reaction and is used as a test for iodide ions.
A yellow precipitate of lead iodide is formed due to the reaction between potassium iodide and lead nitrate. This reaction is a double displacement reaction, where the potassium from potassium iodide swaps places with the lead from lead nitrate, forming the insoluble lead iodide.
The compound precipitate formed when potassium iodide is added to a solution of lead nitrate is lead iodide, which is a yellow precipitate. This reaction is a double displacement reaction where the potassium ion and nitrate ion switch partners to form potassium nitrate and lead iodide.
Potassium iodide is added in excess to ensure that all available lead nitrate has reacted to form lead iodide. This helps to maximize the yield of lead iodide and ensures that there is no excess lead nitrate remaining in the solution.
When potassium iodide is added to lead nitrate, a precipitation reaction occurs resulting in the formation of lead iodide, a yellow insoluble solid, and potassium nitrate, which remains in solution. This reaction can be visually identified by the formation of a yellow precipitate.
When a solution of potassium iodide is added to lead nitrate, a yellow precipitate of lead iodide is formed. This is a double displacement reaction where the cations and anions switch partners to form the products.
A yellow precipitate of lead iodide forms, while potassium nitrate remains in solution. This reaction is a double displacement reaction with an exchange of ions between the two compounds.
A yellow precipitate of lead iodide is formed. This is because potassium iodide reacts with lead nitrate to form lead iodide, which is insoluble in water. The reaction can be represented as: 2KI + Pb(NO3)2 → 2KNO3 + PbI2.
When potassium iodide is added to ammonium carbonate, no significant reaction occurs because potassium iodide and ammonium carbonate are both stable compounds and do not react with each other.
A yellow precipitate of silver iodide is formed due to the reaction between potassium iodide and silver nitrate, as silver iodide is insoluble. The reaction can be described by the equation: 2KI (aq) + AgNO3 (aq) → AgI (s) + 2KNO3 (aq)
The reaction that occurs is a double displacement reaction where lead(II) nitrate and potassium iodide switch partners to form solid lead(II) iodide and potassium nitrate solution. This reaction can be represented by the equation Pb(NO3)2 + 2KI -> Pbl2 + 2KNO3.
When chlorine is added to silver nitrate, it forms silver chloride precipitate, as chlorine replaces the nitrate ion. Similarly, when chlorine is added to potassium chloride, no chemical reaction occurs.