In general, copper will not displace hydrogen from water or from acids, but in the case of hot, concentration H2SO4 a reaction will occur with copper. Why? Because hot, concentrated H2SO4 will act as an oxidizing agent to oxidize the copper to copper cation. HCl cannot do this.
Chat with our AI personalities
HCl does not react with copper because copper is below hydrogen in the reactivity series, which means it is less reactive than hydrogen and cannot displace it from the acid. On the other hand, H2SO4 can react with copper because sulfuric acid is a strong oxidizing agent and can oxidize copper to form copper sulfate and hydrogen gas.
When copper sulfate (CuSO4) reacts with hydrochloric acid (HCl), copper chloride (CuCl2) and sulfuric acid (H2SO4) are formed as products. The balanced chemical equation for this reaction is CuSO4 + 2HCl -> CuCl2 + H2SO4.
Copper does not react with hydrochloric acid (HCl) because it is less reactive than hydrogen. It forms a passive layer of copper chloride (CuCl2) on its surface, which protects the copper underneath from further reaction with the acid.
The chemical equation for the reaction between hydrochloric acid (HCl) and copper (II) sulfate (CuSO4) is: 2 HCl + CuSO4 -> CuCl2 + H2SO4
H2SO4 is typically used instead of HCl in the titration of KMnO4 because HCl can react with KMnO4 and form chlorine gas, which can interfere with the titration results. Additionally, H2SO4 provides the required acidic medium for the reaction to occur between KMnO4 and the analyte.
Acids known to dissolve copper include hydrochloric acid (HCl), nitric acid (HNO3), and sulfuric acid (H2SO4). These acids can react with copper to form soluble copper compounds, allowing the metal to dissolve.