At 298 K, the direction of a reaction is favored based on whether it is exothermic or endothermic. If the reaction is exothermic, it is favored in the direction that consumes heat, while for an endothermic reaction, it is favored in the direction that produces heat. The reaction will proceed in the direction that helps to minimize the overall energy of the system.
The direction of the reaction is favored when the Gibbs free energy change (ΔG) is negative. You can calculate ΔG using the equation ΔG = ΔH - TΔS, where T is the temperature in Kelvin. At 298 K, the sign of ΔG will depend on the values of ΔH and ΔS. If ΔG < 0, the reaction is favored in the forward direction.
Toward I2(s) production
Since ΔH is positive and ΔS is positive, the reaction is endothermic and entropy-increasing. At room temperature (298 K), the reaction equilibrium will be favored in the gas phase to increase entropy due to the positive ΔS value.
A spontaneous reaction at 298 K is one in which the Gibbs free energy change (ΔG) is negative. This means that the reaction is energetically favorable and will proceed in the forward direction without the need for external energy input.
An exothermic reaction is one where heat is released to the surroundings. An example of an exothermic reaction equation at 298 K is: 2H2(g) + O2(g) -> 2H2O(l) + heat
The direction of the reaction is favored when the Gibbs free energy change (ΔG) is negative. You can calculate ΔG using the equation ΔG = ΔH - TΔS, where T is the temperature in Kelvin. At 298 K, the sign of ΔG will depend on the values of ΔH and ΔS. If ΔG < 0, the reaction is favored in the forward direction.
Toward I2(s) production
Toward I2(s) production
Since ΔH is positive and ΔS is positive, the reaction is endothermic and entropy-increasing. At room temperature (298 K), the reaction equilibrium will be favored in the gas phase to increase entropy due to the positive ΔS value.
A spontaneous reaction at 298 K is one in which the Gibbs free energy change (ΔG) is negative. This means that the reaction is energetically favorable and will proceed in the forward direction without the need for external energy input.
A reaction will be spontaneous at 298 K if the Gibbs free energy change (ΔG) for the reaction is negative. This means that the reaction will proceed in the forward direction without requiring an external input of energy. The equation ΔG = ΔH - TΔS can be used to determine if a reaction is spontaneous at a given temperature, where ΔH is the change in enthalpy and ΔS is the change in entropy.
Carbon dioxide (CO2) is formed from its elements (carbon and oxygen) by an exothermic reaction at 298 K and 101.3 kPa.
Products and reactants are equality favored in the reaction
reactants are favored over products in the reaction
reactants are favored over products in the reaction
An exothermic reaction is one where heat is released to the surroundings. An example of an exothermic reaction equation at 298 K is: 2H2(g) + O2(g) -> 2H2O(l) + heat
A high k value indicates that the equilibrium strongly favors the products over the reactants. This means that the reaction will proceed toward the products to a greater extent and reach equilibrium faster. A very high k value suggests that the reaction is almost complete in the forward direction.