To prepare a 0.1M sodium borate buffer at pH 8.5, you would first dissolve sodium borate (Na2B4O7) in water to achieve a 0.1M concentration, adjusting the pH to 8.5 using a strong base like NaOH. Keep in mind the pKa value of boric acid (the conjugate acid of borate) is around 9.2, so the buffer capacity may not be optimal at pH 8.5.
The pH of a 0.001N NaOH solution is around 11.9. NaOH is a strong base, and at this concentration, it will result in a highly alkaline solution.
The pH of pepsin in NaOH would depend on the concentration of NaOH added. Pepsin is an enzyme that functions best at acidic pH levels, around pH 2.0. Adding NaOH, a base, would increase the pH, potentially inactivating the pepsin enzyme as it moves away from its optimal pH range for activity.
The pH of a 0.5N NaOH solution would be around 14. NaOH is a strong base that dissociates completely in water to form hydroxide ions, which contribute to the high pH value.
The pH of a 0.002M solution of NaOH is around 11.98. This is because NaOH is a strong base that dissociates completely in water to produce hydroxide ions, which lead to the alkaline pH.
To prepare a 0.1M sodium borate buffer at pH 8.5, you would first dissolve sodium borate (Na2B4O7) in water to achieve a 0.1M concentration, adjusting the pH to 8.5 using a strong base like NaOH. Keep in mind the pKa value of boric acid (the conjugate acid of borate) is around 9.2, so the buffer capacity may not be optimal at pH 8.5.
You dont - adding NaOH increases pH.
The pH of a 1 millimolar NaOH solution is approximately 11. The concentration of a 1 millimolar solution is 0.001 mol/L, and NaOH is a strong base that completely dissociates in water to produce hydroxide ions, leading to a basic pH.
The pH of a 0.001N NaOH solution is around 11.9. NaOH is a strong base, and at this concentration, it will result in a highly alkaline solution.
The pH of pepsin in NaOH would depend on the concentration of NaOH added. Pepsin is an enzyme that functions best at acidic pH levels, around pH 2.0. Adding NaOH, a base, would increase the pH, potentially inactivating the pepsin enzyme as it moves away from its optimal pH range for activity.
The pH of a 0.5N NaOH solution would be around 14. NaOH is a strong base that dissociates completely in water to form hydroxide ions, which contribute to the high pH value.
HCl : makes it acidic. it decreases the pH NaOH : makes it alkaline. it increases the pH
The pH of a 0.002M solution of NaOH is around 11.98. This is because NaOH is a strong base that dissociates completely in water to produce hydroxide ions, which lead to the alkaline pH.
The pH value of concentrated NaOH is typically around 14, indicating that it is a strongly basic solution.
The pH of a 0.1M NaOH solution is around 13. NaOH is a strong base that dissociates completely in water to produce hydroxide ions, leading to a highly alkaline environment with a high pH value.
To calculate the amount of NaOH needed to increase the pH from 8 to 10, you need to consider the volume of the solution and the concentration of NaOH. Using the equation pH = -log[H+], you can determine the concentration of H+ ions at pH 8 and pH 10, then calculate the amount of NaOH needed to neutralize the difference in H+ ions to reach pH 10.
The pH of a solution of NaOH (sodium hydroxide) is approximately 14, as it is a strong base. This means it is highly alkaline.