In CH3OH, the oxidation number of carbon (C) is -2. In HCOOH, the oxidation number of carbon (C) is +2.
The oxidation number of carbon (C) in CH2O is +2. This is because hydrogen (H) has an oxidation number of +1 and oxygen (O) has an oxidation number of -2, so the sum of the oxidation numbers in CH2O must be zero to balance the charge.
The oxidation number of C in CāOā is +3. Each oxygen atom carries a charge of -2, and since there are 4 oxygen atoms in total with a total charge of -8, the carbon atom's oxidation number must be +3 to balance the charges in the compound.
The oxidation number for carbon (C) in carbon dioxide (CO2) is +4. Each oxygen atom has an oxidation number of -2, so in the compound CO2, the total oxidation number must equal 0.
The oxidation number of C in CO3^2- is +4. Each oxygen atom has an oxidation number of -2, and since the overall charge of the carbonate ion is 2-, the carbon atom must have an oxidation number of +4 to balance the charge.
In CH3OH, the oxidation number of carbon (C) is -2. In HCOOH, the oxidation number of carbon (C) is +2.
The oxidation number of carbon (C) in CH2O is +2. This is because hydrogen (H) has an oxidation number of +1 and oxygen (O) has an oxidation number of -2, so the sum of the oxidation numbers in CH2O must be zero to balance the charge.
The oxidation number of C in CāOā is +3. Each oxygen atom carries a charge of -2, and since there are 4 oxygen atoms in total with a total charge of -8, the carbon atom's oxidation number must be +3 to balance the charges in the compound.
The oxidation number for carbon (C) in carbon dioxide (CO2) is +4. Each oxygen atom has an oxidation number of -2, so in the compound CO2, the total oxidation number must equal 0.
The oxidation number of C in CO3^2- is +4. Each oxygen atom has an oxidation number of -2, and since the overall charge of the carbonate ion is 2-, the carbon atom must have an oxidation number of +4 to balance the charge.
The oxidation number is + for C and -2 for O.
The oxidation number of Mg in MgCO3 is +2, the oxidation number of C in CO3 is +4, and the oxidation numbers of O in CO3 are -2.
The oxidation number of carbon (C) depends on the compound it is in. In most organic compounds, carbon has an oxidation number of +4, +2, 0, or -4.
The oxidation number of Ca in CaC2 is +2. The oxidation number of C in C2 is -4.
The oxidation number of C in 3CO is +2, as in carbon monoxide each oxygen has an oxidation number of -2. In 3CO2, the oxidation number of C is +4.
In KO2, O has an oxidation number of -1, K has an oxidation number of +1. In CO2, O has an oxidation number of -2, C has an oxidation number of +4. In K2CO3, O has an oxidation number of -2, C has an oxidation number of +4, and K has an oxidation number of +1. In the given reaction, the oxidation numbers for each atom remain the same as in their individual compounds.
In both HCN and HNC molecules, the oxidation number of carbon (C) is -3. This is because hydrogen (H) is almost always assigned an oxidation number of +1, and nitrogen (N) is usually assigned an oxidation number of -3. By assigning the oxidation numbers of H and N, we can then determine the oxidation number of C that makes the overall charge of the molecule neutral.