The molarity of phosphoric acid would depend on the concentration of the solution. For example, if you have a 1M solution of phosphoric acid, then the molarity would be 1 mol/L.
The normality of sulfuric acid is 8N when the molarity is 4M because sulfuric acid is a diprotic acid, meaning it can donate two moles of protons per molecule. Since normality is the equivalent concentration of a compound, it is double the molarity for a diprotic acid like sulfuric acid.
The molarity of the unknown acid can be calculated using the formula: M acid x V acid = M base x V base. In this case, the molarity of the unknown acid is 0.112 M.
(.05)X(grams of total solution) = grams of acetic acid (grams of acetic acid)/ (mol. wt. of acetic acid(=60g/mol)) = mol. acetic acid (mol. acetic acid)/ (Liters of total solution) = molarity(M)
You can determine if an acid is concentrated or dilute by looking at its molarity. A high molarity indicates a concentrated acid, while a low molarity indicates a dilute acid. Additionally, concentrated acids are usually labeled as such on their packaging.
The molarity not depend on weak or strong.
The molarity of phosphoric acid would depend on the concentration of the solution. For example, if you have a 1M solution of phosphoric acid, then the molarity would be 1 mol/L.
you cant
The normality of sulfuric acid is 8N when the molarity is 4M because sulfuric acid is a diprotic acid, meaning it can donate two moles of protons per molecule. Since normality is the equivalent concentration of a compound, it is double the molarity for a diprotic acid like sulfuric acid.
The molarity of the unknown acid can be calculated using the formula: M acid x V acid = M base x V base. In this case, the molarity of the unknown acid is 0.112 M.
(.05)X(grams of total solution) = grams of acetic acid (grams of acetic acid)/ (mol. wt. of acetic acid(=60g/mol)) = mol. acetic acid (mol. acetic acid)/ (Liters of total solution) = molarity(M)
You can determine if an acid is concentrated or dilute by looking at its molarity. A high molarity indicates a concentrated acid, while a low molarity indicates a dilute acid. Additionally, concentrated acids are usually labeled as such on their packaging.
Adding water to a solution of oxalic acid does not affect its molarity because the total number of moles of oxalic acid in the solution remains the same. Molarity is calculated based on the number of moles of solute divided by the volume of the solution, so as long as the number of moles of oxalic acid stays constant, the molarity remains unchanged.
HCl is a strong acid no matter the molarity or molality.
Depends on what you mean by dangerous and the molarity of the acid. The strongest acid is Hydroiodic Acid or HI
A concentrated acid has more acid than water and a dilute acid has more water than acid. True facts, otherwise known as its molarity. The greater the molarity the more concentrated it is (moles of acid/ liter of solution)
To find the molarity, first convert the mass of sulfuric acid to moles by dividing by its molar mass (98.08 g/mol). Then, calculate the molarity by dividing the moles of sulfuric acid by the volume of the solution in liters (280 mL = 0.28 L). Molarity = moles of solute / liters of solution.