answersLogoWhite

0

In RNA, the unique complementary base pairing is between adenine (A) and uracil (U), and between cytosine (C) and guanine (G).

User Avatar

AnswerBot

2mo ago

Still curious? Ask our experts.

Chat with our AI personalities

BeauBeau
You're doing better than you think!
Chat with Beau
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao

Add your answer:

Earn +20 pts
Q: What is the unique complementary base pairing in RNA?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemistry

How does RNA complementary base pairing contribute to the process of protein synthesis?

RNA complementary base pairing plays a crucial role in protein synthesis by allowing the transfer of genetic information from DNA to RNA and then to proteins. During protein synthesis, RNA molecules use complementary base pairing to match with specific sequences on the DNA template, forming a template for the assembly of amino acids into proteins. This process ensures that the correct amino acids are added in the correct order, ultimately determining the structure and function of the protein being synthesized.


How does complementary base pairing in RNA contribute to the stability and specificity of molecular interactions within the genetic code?

Complementary base pairing in RNA helps to stabilize and ensure the specificity of molecular interactions within the genetic code by allowing the matching of nucleotide bases (A-U and G-C) during processes like transcription and translation. This pairing ensures that the correct sequence of nucleotides is maintained, which is crucial for the accurate transmission of genetic information and the production of functional proteins.


What are the RNA complementary base pairs and how do they contribute to the process of genetic information transfer?

RNA complementary base pairs are adenine (A) with uracil (U), and cytosine (C) with guanine (G). These base pairs play a crucial role in the process of genetic information transfer by ensuring accurate and faithful replication of the genetic code during transcription and translation. The complementary base pairing allows for the precise copying of the genetic information from DNA to RNA, and then from RNA to proteins, ultimately leading to the synthesis of specific proteins based on the genetic code.


Why are they no hydrogen bonds in RNA?

Hydrogen bonds are not as prevalent in RNA as in DNA because RNA is typically single-stranded, so there are fewer opportunities for complementary base pairing and hydrogen bond formation between nucleotides along the strand. In RNA, hydrogen bonds may still form between complementary bases within the same strand or during interactions with proteins or other molecules.


What are the complementary base pairs in RNA and how do they contribute to the structure and function of the molecule?

In RNA, the complementary base pairs are adenine (A) with uracil (U), and guanine (G) with cytosine (C). These base pairs contribute to the structure and function of RNA by forming hydrogen bonds that help stabilize the molecule's double-stranded regions. This pairing also allows for accurate replication and transcription of genetic information, essential for protein synthesis and other cellular processes.