answersLogoWhite

0


Best Answer

You have to have data in order to find Ea.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

6mo ago

To determine the activation energy barrier for a reaction using an Arrhenius plot, measure the rate constants at different temperatures and plot ln(k) against 1/T. The slope of the resulting line is equal to -Ea/R, where Ea is the activation energy and R is the gas constant. By rearranging this equation, you can calculate the activation energy barrier for the reaction.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Use an Arrhenius plot to determine the activation barrier for the reaction?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemistry

If a temperature increase from 22.0 to 34.0 triples the rate constant for a reaction what is the value of the activation barrier for the reaction?

You can use the Arrhenius equation to solve for the activation energy barrier (Ea). The formula is k = A * exp(-Ea/RT), where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy barrier, R is the gas constant, and T is the temperature in Kelvin. Since the rate constant triples when the temperature increases from 22.0 to 34.0, you can set up two equations using the Arrhenius equation and solve for Ea.


What is activation barrier?

An activation barrier is the minimum amount of energy required for a chemical reaction to occur. It represents the energy gap between the reactants and the activated complex or transition state. Higher activation barriers lead to slower reaction rates.


Activation energy barriers?

Activation energy barriers represent the energy that must be overcome for a chemical reaction to occur. High activation energy barriers indicate a slower reaction rate, while lower barriers indicate faster reactions. Catalysts work by lowering the activation energy barrier, making reactions occur more quickly.


What does the activation energy for a reaction represent?

Activation energy is the amount of energy needed to start a reaction.


Is Activation energy the minimum energy needed for a reaction to start?

Yes, that's correct. Activation energy is the minimum amount of energy required to start a chemical reaction. It is necessary to overcome the energy barrier between reactants and products and initiate the reaction.

Related questions

If a temperature increase from 22.0 to 34.0 triples the rate constant for a reaction what is the value of the activation barrier for the reaction?

You can use the Arrhenius equation to solve for the activation energy barrier (Ea). The formula is k = A * exp(-Ea/RT), where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy barrier, R is the gas constant, and T is the temperature in Kelvin. Since the rate constant triples when the temperature increases from 22.0 to 34.0, you can set up two equations using the Arrhenius equation and solve for Ea.


What do we call the barrier to a chemical reaction?

The Activation Energy.


What is another name for the activation energy barrier in a reaction?

The activation energy barrier in a reaction is also known as the energy barrier or energy threshold. This term refers to the minimum amount of energy required for a chemical reaction to occur.


What is activation barrier?

An activation barrier is the minimum amount of energy required for a chemical reaction to occur. It represents the energy gap between the reactants and the activated complex or transition state. Higher activation barriers lead to slower reaction rates.


How does activation energy affect the progess of a reaction?

Activation energy is the minimum amount of energy required for a reaction to occur. A higher activation energy barrier means fewer molecules have enough energy to react, slowing down the reaction. Conversely, a lower activation energy barrier allows more molecules to react, leading to a faster reaction rate.


Why rate constant decrease when activation increase in arrhenius equation?

The rate constant in the Arrhenius equation decreases as the activation energy increases because a higher activation energy means that fewer molecules possess the required energy to overcome the energy barrier and react. This results in a lower frequency of successful collisions between reacting molecules, leading to a decrease in the rate constant.


How does activation energy affect chemical reactions?

Activation energy is the minimum amount of energy required to initiate a chemical reaction. Higher activation energy means the reaction is less likely to occur, whereas lower activation energy makes the reaction proceed more easily. By overcoming the activation energy barrier, molecules can collide and react to form new products.


Activation energy barriers?

Activation energy barriers represent the energy that must be overcome for a chemical reaction to occur. High activation energy barriers indicate a slower reaction rate, while lower barriers indicate faster reactions. Catalysts work by lowering the activation energy barrier, making reactions occur more quickly.


Reactants capable of interacting to form products in a chemical reaction must first?

Overcome an energy barrier known as the activation energy. This barrier is necessary to initiate the reaction by breaking existing bonds in the reactants. Once the activation energy is surpassed, the reactants can rearrange and form new bonds to create the products of the reaction.


What energy is the energy needed to start a reaction?

Activation Energy.


What does the activation energy for a reaction represent?

Activation energy is the amount of energy needed to start a reaction.


How does a chemical reaction starts?

A reaction occurs when 2 particles collide with sufficient energy to overcome the activation barrier and then react.