answersLogoWhite

0


Best Answer

The ratio of the first line of the Lyman series to the first line of the Balmer series in the hydrogen spectrum is 1:5.

User Avatar

AnswerBot

4w ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: In hydrogen spectrumwhat is the ratio of first line of Lyman series to the first line of balmer series?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemistry

To which series would the emitted light belong if an electron in a hydrogen atom underwent a transition from level n 5 to level n 1?

The electron transition from n=5 to n=1 in a hydrogen atom corresponds to the Balmer series, specifically the Balmer-alpha line which is in the visible part of the spectrum.


What is the name of the third series in the spectrum of hydrogen?

In ascending order of the lower energy state involved in the transition, the first six families of lines in the hydrogen spectrum are: Lyman series Balmer series Paschen series Brackett series Pfund series Humphreys series


Spectral lines of the Lyman and Balmer series do not overlap Verify this statement by calculating the longest wavelength associated with the Lyman series and shortest wavelength associated with the B?

The longest wavelength in the Lyman series is the transition to n=2, which corresponds to the Lyman-alpha line at 121.6 nm. The shortest wavelength in the Balmer series is the transition to n=2, which corresponds to the Balmer-α line at 656.3 nm. Since the Lyman-alpha line has a longer wavelength than the Balmer-α line, they do not overlap.


What is the line spectrum of the hydrogen atom?

The line spectrum of the hydrogen atom consists of discrete lines at specific wavelengths corresponding to different electron transitions within the atom. These lines are a result of the energy differences between electron orbitals in the atom. Each line represents a specific electron transition, such as the Lyman, Balmer, and Paschen series.


Spectral lines of the lyman and balmer series do not overlap?

The Lyman series consists of spectral lines in the ultraviolet region, while the Balmer series consists of spectral lines in the visible region of the electromagnetic spectrum. Since these series belong to different regions, their spectral lines do not overlap.

Related questions

What is the ratio of the wave length of last line of balmer and Lehman series?

The ratio of the wavelengths of the last line in the Balmer series to the last line in the Lyman series is 1:5. The Balmer series is associated with transitions to the n=2 energy level, while the Lyman series is associated with transitions to the n=1 energy level in the hydrogen atom.


Which spectrum of hydrogen consists of the Lyman Balmer and Paschen series?

The Lyman series consists of transitions to the n=1 state, the Balmer series to the n=2 state, and the Paschen series to the n=3 state in the hydrogen atom. Each series represents a specific range of wavelengths or frequencies of electromagnetic radiation emitted by hydrogen when electrons transition between these energy levels.


To which series would the emitted light belong if an electron in a hydrogen atom underwent a transition from level n 5 to level n 1?

The electron transition from n=5 to n=1 in a hydrogen atom corresponds to the Balmer series, specifically the Balmer-alpha line which is in the visible part of the spectrum.


What is the name of the third series in the spectrum of hydrogen?

In ascending order of the lower energy state involved in the transition, the first six families of lines in the hydrogen spectrum are: Lyman series Balmer series Paschen series Brackett series Pfund series Humphreys series


Spectral lines of the Lyman and Balmer series do not overlap Verify this statement by calculating the longest wavelength associated with the Lyman series and shortest wavelength associated with the B?

The longest wavelength in the Lyman series is the transition to n=2, which corresponds to the Lyman-alpha line at 121.6 nm. The shortest wavelength in the Balmer series is the transition to n=2, which corresponds to the Balmer-α line at 656.3 nm. Since the Lyman-alpha line has a longer wavelength than the Balmer-α line, they do not overlap.


What are the wavelengths of hydrogen?

The hydrogen spectrum consists of several series of spectral lines, each corresponding to a different electron transition. The Lyman series, which corresponds to transitions to the n=1 energy level, has wavelengths in the ultraviolet region. The Balmer series, corresponding to transitions to the n=2 energy level, has wavelengths in the visible region.


What is the line spectrum of the hydrogen atom?

The line spectrum of the hydrogen atom consists of discrete lines at specific wavelengths corresponding to different electron transitions within the atom. These lines are a result of the energy differences between electron orbitals in the atom. Each line represents a specific electron transition, such as the Lyman, Balmer, and Paschen series.


In science what is meant by the Lyman series?

The Lyman series refers to a series of spectral lines in the ultraviolet region of the electromagnetic spectrum that are emitted by hydrogen atoms when electrons transition to the n=1 energy level. These transitions result in the emission of photons with specific wavelengths that are characteristic of the Lyman series.


Why do Lyman transitions produce ultraviolet photons while the Balmer transitions produce visible light photons?

The Lyman series is the group of energies corresponding to the transitionsof an electron between the "ground state" ... the lowest energy level ... andany other energy level that an electron can have in a hydrogen atom.The Balmer series is the group of energies corresponding to the transitionsbetween the second energy level in the hydrogen atom and any other one(except the ground state).But the energy difference between the ground state and the second level inthe hydrogen atom is about four times the difference between the second leveland any higher one, so it's pretty clear that any line in the Lyman series ought tohave substantially more energy than any line in the Balmer series.And that's a fact. The shortest wavelength in the Balmer series is 410 nm ...right there in violet light ... whereas the shortest wavelength in the Lymanseries is 122 nm, almost 2 octaves above the blue end of the visible spectrum,and well into the ultraviolet.Similarly . . .The Paschen series (transitions to/from the 3rd energy level),the Brackett series (transitions to/from the 4th energy level), andthe Pfund series (transitions to/from the 5th energy level)are groups of lines at longer and longer wavelengths, extending through the infraredand down into the short microwave wavelengths.The lowest-frequency/longest-wavelength transition associated with thehydrogen atom is the "flip" transition of the electron from one spin-orientation to the other. That's the so-called "Hydrogen-alpha" line at roughly1420 MHz / 21 cm. Wherever Hydrogen exists, electrons are flipping, andeither absorbing or emitting "H-α" radiation.For receivers capable of tuning 1420 MHz (no problem), the universe is alive with itin every direction. And if you have the opportunity to examine a chart of frequencyallocations, you'll notice that this frequency (and the band about 13 MHz to either side)is allocated for "Astronomy, Space Research, and Earth Exploration Satellites" (lookingaway from space !).


Spectral lines of the lyman and balmer series do not overlap?

The Lyman series consists of spectral lines in the ultraviolet region, while the Balmer series consists of spectral lines in the visible region of the electromagnetic spectrum. Since these series belong to different regions, their spectral lines do not overlap.


Determine the region of the electromagnetic spectrum in which the lines of the Lyman series are observed?

The lines of the Lyman series are observed in the ultraviolet region of the electromagnetic spectrum. These lines correspond to transitions of an electron in a hydrogen atom from higher energy levels to the n=1 energy level.


The lines at the ultraviolet end of the hydrogen spectrum are known as the lyman series wich electron transitions within an atom are responsible for these lines?

The Lyman series in the hydrogen spectrum corresponds to electron transitions from higher energy levels to the n=1 energy level. These transitions result in the emission of photons in the ultraviolet region of the electromagnetic spectrum.