Decreasing the reactant concentration will slow the rate of the reaction. If you use the idea of adding oxygen and hydrogen to make water and decease the amount of one, you will produce less water. It doesn't matter which reactant is less as there are just are not enough to go around.
Chat with our AI personalities
Decreasing the concentration of reactants will usually lead to a slower reaction rate because there are fewer reactant molecules available to collide and react with each other. This decreases the frequency of successful collisions and slows down the rate of reaction.
It depends on the order of the reaction. If it is zero order, decreasing the reactant concentration will have NO effect on the rate. If it is 1st or 2nd order (or more), then decreasing the concentration will DECREASE the reaction rate.
Decreasing the reactant concentration typically leads to a decrease in the rate of reaction, as there are fewer reactant particles available to collide and form products. This reduction in reactant concentration often results in a slower reaction rate due to the fewer collisions taking place.
It depends on the order of the reaction. If it is zero order, decreasing the reactant concentration will have NO effect on the rate. If it is 1st or 2nd order (or more), then decreasing the concentration will DECREASE the reaction rate.
The frequency of collisions is changed.
Changes in concentration affect the rate of reaction by impacting the rate constant, k, in the rate law equation. Increasing reactant concentrations often leads to a higher rate of reaction, while decreasing concentrations can slow the reaction down. The rate law shows how the rate is related to the concentrations of reactants.
Changes in concentration affect the rate of the reaction as defined by the rate law equation. Increasing the concentration of reactants typically leads to an increase in the reaction rate since there are more reactant particles available to collide and form products. The rate law equation quantifies this relationship between concentration and reaction rate through the reaction order with respect to each reactant.