There are 3.01 x 10^24 formula units of CaCl2 in 2.50 moles. This can be calculated using Avogadro's number (6.022 x 10^23) and the formula units present in one mole of CaCl2 (3).
Chat with our AI personalities
To find the number of moles of CaCl2 in 2.00x10^24 formula units, you need to first determine the molar mass of CaCl2, which is 110.98 g/mol. Then, divide the number of formula units by Avogadro's number (6.022x10^23) to convert to moles. This gives you approximately 3.32 moles of CaCl2.
To determine the number of formula units of AgNO3 in 147g of the compound, you first need to calculate the molar mass of AgNO3. The molar mass of AgNO3 is 169.87 g/mol. Next, divide the given mass (147g) by the molar mass to find the number of moles present in the sample. Finally, use Avogadro's number (6.022 x 10^23) to convert moles to formula units.
42.394 grams.
To determine the number of moles of CaCl2 in a solution, you need to know the concentration of the solution in mol/L. Without this information, it is not possible to calculate the number of moles of CaCl2 in the given volume of 250 ml.
The molar mass of CaCl2 is 110.98 g/mol. To find the mass of 5.55 x 10^22 formula units, you would multiply the molar mass by the number of formula units. This gives a mass of approximately 6.16 x 10^24 grams.