To find the number of moles of CaCl2 in 2.00x10^24 formula units, you need to first determine the molar mass of CaCl2, which is 110.98 g/mol. Then, divide the number of formula units by Avogadro's number (6.022x10^23) to convert to moles. This gives you approximately 3.32 moles of CaCl2.
To determine the number of formula units of AgNO3 in 147g of the compound, you first need to calculate the molar mass of AgNO3. The molar mass of AgNO3 is 169.87 g/mol. Next, divide the given mass (147g) by the molar mass to find the number of moles present in the sample. Finally, use Avogadro's number (6.022 x 10^23) to convert moles to formula units.
42.394 grams.
To determine the number of moles of CaCl2 in a solution, you need to know the concentration of the solution in mol/L. Without this information, it is not possible to calculate the number of moles of CaCl2 in the given volume of 250 ml.
The molar mass of CaCl2 is 110.98 g/mol. To find the mass of 5.55 x 10^22 formula units, you would multiply the molar mass by the number of formula units. This gives a mass of approximately 6.16 x 10^24 grams.
To calculate the number of moles, first find the molar mass of CaCl2 (40.08 g/mol for Ca + 2 * 35.45 g/mol for Cl). Then divide the given number of formula units by Avogadro's number (6.022 x 10^23 formula units/mol) to get the number of moles.
To find the number of moles of CaCl2 in 2.00x10^24 formula units, you need to first determine the molar mass of CaCl2, which is 110.98 g/mol. Then, divide the number of formula units by Avogadro's number (6.022x10^23) to convert to moles. This gives you approximately 3.32 moles of CaCl2.
To calculate the number of moles of CaCl2, you first need to find the molar mass of CaCl2, which is 110.98 g/mol. Then, you divide the given number of formula units (1.261024) by Avogadro's number to convert it to moles. So, the answer would be approximately 1.14 moles of CaCl2.
The answer is 2,09 moles.
To find the number of moles of CaCl2, first calculate the molar mass of CaCl2: Ca: 40.08 g/mol Cl: 35.45 g/mol (x2 since there are two Cl atoms) Total molar mass: 40.08 + 35.45(2) = 110.98 g/mol Next, calculate the number of moles: 2.41 x 10^24 formula units / Avogadro's number (6.022 x 10^23) = 4 moles of CaCl2.
To find the number of moles of CaCl2, you need to use its molar mass. The molar mass of CaCl2 is approximately 110.98 g/mol. Dividing 7.5 g by the molar mass gives you approximately 0.067 moles of CaCl2.
0.688 moles*6.02x1023=4.14x1023 Formula units
There are 5.25 x 10^22 formula units in 0.87 moles of sodium acetate. This is determined by multiplying the Avogadro's number (6.022 x 10^23 formula units/mole) by the number of moles.
To find the number of formula units of magnesium oxide in 5.68 moles, you first need to determine the formula of magnesium oxide (MgO). Then use Avogadro's number (6.022 x 10^23) to convert moles to formula units. So, in 5.68 moles of MgO, there are approximately 3.43 x 10^24 formula units.
10 formula units
To determine the number of formula units of AgNO3 in 147g of the compound, you first need to calculate the molar mass of AgNO3. The molar mass of AgNO3 is 169.87 g/mol. Next, divide the given mass (147g) by the molar mass to find the number of moles present in the sample. Finally, use Avogadro's number (6.022 x 10^23) to convert moles to formula units.
The answer is 5,978 moles.