The RNA that is in the shape of a cloverleaf is transfer RNA (tRNA), while the RNA that is in the shape of a hairpin is messenger RNA (mRNA) or microRNA (miRNA). These structures are important for the function and stability of these RNA molecules in cells.
The cap and tail on eukaryotic mRNA play important roles in mRNA stability and translation. The 5' cap protects the mRNA from degradation and helps in the initiation of translation. The poly(A) tail at the 3' end of mRNA also plays a role in mRNA stability and regulation of translation.
The 5' cap of mRNA is important for several reasons: it protects the mRNA from degradation by exonucleases, helps in the recognition and binding of the mRNA by the ribosome for translation, and is essential for efficient splicing of introns.
The correct sequence of events in forming a protein is transcription, where the DNA is transcribed into mRNA, followed by translation, where the mRNA is decoded to build a specific sequence of amino acids, and finally, post-translational modifications that help the protein fold into its correct shape and function properly.
The process of making mRNA from DNA is called transcription. It takes place in the cell nucleus and involves the synthesis of mRNA using one strand of DNA as a template.
mRNA
The RNA that is in the shape of a cloverleaf is transfer RNA (tRNA), while the RNA that is in the shape of a hairpin is messenger RNA (mRNA) or microRNA (miRNA). These structures are important for the function and stability of these RNA molecules in cells.
The cap and tail on eukaryotic mRNA play important roles in mRNA stability and translation. The 5' cap protects the mRNA from degradation and helps in the initiation of translation. The poly(A) tail at the 3' end of mRNA also plays a role in mRNA stability and regulation of translation.
Transcription of the DNA into messenger RNA (mRNA). mRNA contains the anti-codons for ribosomal binding, so the transfer RNA (tRNA) can add the corresponding amino acid. This part is known as translation.
Transcription is the process by which the mRNA message is produced in a cell. During transcription, the DNA sequence is copied into mRNA by RNA polymerase.
DNA -> transcription -> pre-mRNA -> mRNA processing -> mRNA -> translation -> protein
The 5' cap of mRNA is important for several reasons: it protects the mRNA from degradation by exonucleases, helps in the recognition and binding of the mRNA by the ribosome for translation, and is essential for efficient splicing of introns.
The mRNA is transcribed into proteins
Uracil replaces Thymine as a base in mRNA.
The mRNA attaches itself to a ribosome.
stop codon on mRNA
mRNA is made up of anticodons