An example of a gene with three or more alleles for a single trait is the ABO blood group gene. This gene has three main alleles - A, B, and O - which determine blood type. The different combinations of these alleles result in the various blood types (A, B, AB, and O) observed in humans.
An example of multiple alleles is the ABO blood system in humans, where the gene for blood type has three alleles: A, B, and O. Each person inherits two of these alleles, resulting in four possible blood types: A, B, AB, and O.
Blood groups are examples of multiple alleles because there are more than two possible alleles (A, B, O) that determine an individual's blood type. Codominance refers to the situation where both alleles are expressed in the phenotype, as seen in the AB blood type where both the A and B alleles are expressed equally.
Blood type in humans is controlled by three alleles at the ABO gene locus on chromosome 9. These three alleles are responsible for determining the blood types A, B, AB, and O. Each person inherits one allele from each parent, resulting in various blood type combinations.
Blood type in humans is determined by multiple alleles: A, B, and O. Each person inherits two of these alleles, resulting in four possible blood types: A, B, AB, and O.
There are three alleles for blood type: IA=Blood type A IB=Blood type B i=Blood type O The alleles for blood type A and B are codominant so when someone contains the IA and IB alleles, their blood type is AB.
An example of a gene with three or more alleles for a single trait is the ABO blood group gene. This gene has three main alleles - A, B, and O - which determine blood type. The different combinations of these alleles result in the various blood types (A, B, AB, and O) observed in humans.
Human blood type is determined by codominant alleles.
Yes, the ABO blood group system is determined by multiple alleles. There are three main alleles involved in the ABO blood group system: A, B, and O. These alleles determine the presence or absence of specific antigens on red blood cells, which results in the different blood types (A, B, AB, or O).
Blood type inheritance is determined by three alleles (A, B, O), but an individual inherits only two alleles, one from each parent. This means a baby can have only two alleles for blood type, such as AO or BO, even though three alleles exist in the population.
An example of multiple alleles is the ABO blood system in humans, where the gene for blood type has three alleles: A, B, and O. Each person inherits two of these alleles, resulting in four possible blood types: A, B, AB, and O.
Blood groups are examples of multiple alleles because there are more than two possible alleles (A, B, O) that determine an individual's blood type. Codominance refers to the situation where both alleles are expressed in the phenotype, as seen in the AB blood type where both the A and B alleles are expressed equally.
The blood type trait that is controlled by more than two alleles for a given gene is known as the ABO blood group system. It involves three alleles: A, B, and O, which determine blood types A, B, AB, and O. This system results in four possible blood types due to the combination of these multiple alleles.
Blood type in humans is controlled by three alleles at the ABO gene locus on chromosome 9. These three alleles are responsible for determining the blood types A, B, AB, and O. Each person inherits one allele from each parent, resulting in various blood type combinations.
Blood type in humans is determined by multiple alleles: A, B, and O. Each person inherits two of these alleles, resulting in four possible blood types: A, B, AB, and O.
The three alleles are A, B, and O
The three alleles of the single gene that controls blood type are typically referred to as A, B, and O. The A and B alleles are co-dominant to each other, while the O allele is recessive to both A and B.