RNA polymerase moves in the 3' to 5' direction along the DNA template strand during transcription. This allows it to synthesize an RNA molecule in the 5' to 3' direction.
The promoter region of a gene contains specific sequences that signal RNA polymerase II where to bind and initiate transcription. The orientation of these sequences determines which DNA strand is recognized as the template strand and therefore dictates the direction in which RNA polymerase II moves along the DNA during transcription.
During DNA replication, polymerase moves along the template strand in the 3' to 5' direction, synthesizing the new strand in the 5' to 3' direction. This is because DNA polymerase can only add nucleotides to the 3' end of the growing strand.
DNA polymerase moves along the DNA strand in the 3' to 5' direction during replication by adding new nucleotides to the growing strand in a continuous manner. It reads the template strand in the 3' to 5' direction and synthesizes the new strand in the 5' to 3' direction. This process ensures accurate replication of the DNA molecule.
RNA polymerase reads the DNA template and synthesizes a complementary RNA strand by linking together RNA nucleotides according to the base pairing rules. RNA polymerase moves along the DNA strand in the 3' to 5' direction, synthesizing the RNA transcript in the 5' to 3' direction.
RNA polymerase moves in the 3' to 5' direction along the DNA template strand during transcription. This allows it to synthesize an RNA molecule in the 5' to 3' direction.
The promoter region of a gene contains specific sequences that signal RNA polymerase II where to bind and initiate transcription. The orientation of these sequences determines which DNA strand is recognized as the template strand and therefore dictates the direction in which RNA polymerase II moves along the DNA during transcription.
RNA polymerase reads the DNA template and synthesizes a complementary RNA strand by linking together RNA nucleotides according to the base pairing rules. RNA polymerase moves along the DNA strand in the 3' to 5' direction, synthesizing the RNA transcript in the 5' to 3' direction.
RNA polymerase catalyze the synthesis of RNA by copying the DNA. It occurs in the 5' to 3' direction(moves down).
The antiparallel nature of DNA strands allows for simultaneous synthesis of leading and lagging strands. One polymerase moves in the 5' to 3' direction along the leading strand, while a second polymerase moves in the opposite direction on the lagging strand to create short Okazaki fragments.
DNA polymerase is the main enzyme responsible for elongating DNA strands during DNA replication. It catalyzes the addition of nucleotides to the growing strand in a 5' to 3' direction.
DNA polymerase is the enzyme responsible for positioning nucleotides during DNA replication. DNA polymerase can add nucleotides to the growing DNA strand in the 5' to 3' direction and proofread for errors in base pairing.
You would need a DNA polymerase protein to complete the synthesis of a new strand of DNA. DNA polymerase is an enzyme that assembles new DNA strands by adding nucleotides one by one in the 5' to 3' direction.
No, RNA polymerase is not used in both leading and lagging strands of DNA replication. RNA polymerase is responsible for transcribing DNA into RNA during gene expression, while DNA polymerase is responsible for synthesizing new DNA strands during replication. DNA polymerase is used on both the leading and lagging strands during DNA replication.
The transcription process stops.mRNA detaches and moves to the ribosomesTranscription is the first step of gene expression, in which a particular segment of DNA is copied into RNA by the enzyme RNA polymerase.
The correct answer is: RNA is synthesized by RNA polymerase that reads one strand of DNA. RNA polymerase reads DNA 3' to 5'. When RNA is made, it is made 5' to 3'. Most polymerases have the 3' to 5' "reading" activity. The created RNA strand is identical to the coding strand of DNA, which is also in the orientation of 5' to 3'.
DNA polymerase catalyzes the reactions that are responsible for synthesizing new DNA strands in the 5' to 3' direction. The parent DNA strand is read in the 3' to 5' direction but the daughter strand is extended in the opposite direction.