Chat with our AI personalities
Suppose x and y are rational numbers.That is, x = p/q and y = r/s where p, q, r and s are integers and q, s are non-zero.Then x + y = ps/qs + qr/qs = (ps + qr)/qsThe set of integers is closed under multiplication so ps, qr and qs are integers;then, since the set of integers is closed addition, ps + qr is an integer;and q, s are non-zero so qs is not zero.So x + y can be represented by a ratio of two integers, ps + qr and qs where the latter is non-zero.
Suppose p/q and r/s are rational numbers where p, q, r and s are integers and q, s are non-zero.Then p/q + r/s = ps/qs + qr/qs = (ps + qr)/qs. Since p, q, r, s are integers, then ps and qr are integers, and therefore (ps + qr) is an integer. q and s are non-zero integers and so qs is a non-zero integer. Consequently, (ps + qr)/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.